

SMARC Computer on Module

NXP *i.MX93* 2 x Cortex-A55 up to 1.7GHz ARM Cortex-M33 real-time Processor at 250Mhz ARM Ethos™-U65 microNPU up to 0.5 TOPS 1 x 24bits single-channel LVDS LCD/MIPI-DSI x 4 4 x COM Ports 1 x SDHC WiFi a/b/g/n/ac/ax + BT 5.3 (optional) 1 x USB OTG 2.0, 4 x USB Host 2.0 2 x 10/100/1000M Gigabit Ethernet with TSN 2 x CAN-FD, 2 x SPIs, 4 x I2Cs, 1 x MIPI_CSI and 2 x I2S

SMARC-iMX93

(SMARC 2.2 Specification Compliant)

Revision History

Revision	Date	Changes from Previous Revision
1.0	2024/10/01	Initial Release
		i.

USER INFORMATION

About This Manual

This document provides information about products from EMBEDIAN, INC. No warranty of suitability, purpose, or fitness is implied. While every attempt has been made to ensure that the information in this document is accurate, the information contained within is supplied "as-is" and is subject to change without notice.

For the circuits, descriptions and tables indicated, EMBEDIAN assumes no responsibility as far as patents or other rights of third parties are concerned.

Copyright Notice

Copyright © 2024 EMBEDIAN, INC..

All rights reserved. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the express written permission of EMBEDIAN.

Trademarks

The following lists the trademarks of components used in this board.

- ARM is a registered trademark of ARM Limited.
- Android is a registered trademark of Google
- Linux is a registered trademark of Linus Torvalds.
- Realtek is a registered trademark of Realtek
- All other products and trademarks mentioned in this manual are trademarks of their respective owners.

Standards

EMBEDIAN is ISO 9001:2008 and ISO14001-certified manufacturer. SMARC is an SGET standard for ARM computer on module.

Warranty

This EMBEDIAN product is warranted against defects in material and workmanship for the warranty period from the date of shipment. During the warranty period, *EMBEDIAN* will at its discretion, decide to repair or replace defective products.

Within the warranty period, the repair of products is free of charge as long as warranty conditions are observed.

The warranty does not apply to defects resulting from improper or inadequate

maintenance or handling by the buyer, unauthorized modification or misuse,

operation outside of the product's environmental specifications or improper

installation or maintenance.

EMBEDIAN will not be responsible for any defects or damages to other products not supplied by EMBEDIAN that are caused by a faulty EMBEDIAN

product.

Technical Support

Technicians and engineers from *EMBEDIAN* and/or its subsidiaries and official distributors are available for technical support. We are committed to making our product easy to use and will help you use our products in your systems.

Before contacting EMBEDIAN technical support, please consult our Web site for the latest product documentation, utilities, and drivers. If the information does not help solve the problem, contact us by e-mail or telephone.

Table of Contents

CHAPTER 1 INTRODUCTION	9
1.1 FEATURES AND FUNCTIONALITY	11
1.2 MODULE VARIANT	12
1.3 BLOCK DIAGRAM	13
1.4 SOFTWARE SUPPORT / HARDWARE ABSTRACTION	14
1.5 DOCUMENT AND STANDARD REFERENCES	15
CHAPTER 2 SPECIFICATIONS	21
2.1 SMARC-IMX93 GENERAL FUNCTIONS	21
2.2 SMARC-IMX93 DEBUG	97
2.3 MECHANICAL SPECIFICATIONS	97
2.4 ELECTRICAL SPECIFICATIONS	113
2.5 ENVIRONMENTAL SPECIFICATIONS	116
CHAPTER 3 CONNECTOR PINOUT	118
3.1 SMARC-IMX93 CONNECTOR PIN MAPPING	118
CHAPTER 4 POWER CONTROL SIGNALS BETWEEN SMARC-IMX93 MODULE AND CARRIER	155
4.1 SMARC-IMX93 MODULE POWER	155
4.2 POWER SIGNALS	160
4.3 POWER FLOW AND CONTROL SIGNALS BLOCK DIAGRAM	165
4.4 POWER STATES	167
4.5 POWER SEQUENCES	169
4.6 TERMINATIONS	173
4.7 BOOT DEVICE SELECTION	176

Using this Manual

This guide provides information about the Embedian SMARC-*i*MX93 for NXP *i*.MX93 embedded SMARC core module family.

Conventions used in this guide

This table describes the typographic conventions used in this guide:

This Convention	Is used for
Italic type	Emphasis, new terms, variables, and
	document titles.
monospaced type	Filenames, pathnames, and code
	examples.

Embedian Information

Document Updates

Please always check the product specific section on the Embedian support website at www.embedian.com/ for the most current revision of this document.

Contact Information

For more information about your Embedian products, or for customer service and technical support, contact Embedian directly.

To contact Embedian by	Use
Mail	Embedian, Inc.
	9F-4. 432 Keelung Rd. Sec. 1,
	Taipei 11051, Taiwan
World Wide Web	http://www.embedian.com/
Telephone	+ 886 2 2722 3291

Additional Resources

Please also refer to the most recent *NXP i.MX93* processor reference manual and related documentation for additional information.

Chapter

Introduction

This Chapter gives background information on the SMARC-*i*MX93 Section include :

- Features and Functionality
- Module Variant
- Differences between Module Variants
- Block diagram
- Software Support / Hardware Abstraction
- Module Variant
- Document and Standard References

Chapter 1 Introduction

The SMARC-iMX93 SMARC 2.2 module family is highly scalable and equipped with i.MX 93 Applications Processors manufactured by NXP. The processors integrate Arm Cortex-A55 cores, bringing performance and energy efficiency to Linux-based edge applications and the Arm Ethos-U65 microNPU, enabling developers to create more capable, cost-effective and energy-efficient machine learning (ML) applications. The i.MX 93 processors deliver advanced security with integrated EdgeLock secure enclave and an efficient pixel pipeline to perform 2D graphics processing to realize cost-effective GUI solutions.

The *SMARC-IMX93* provides fast and low power LPDDR4 memory technology with inline ECC support, combined with 16GB eMMC Flash memory. Various interfaces for embedded applications such as Dual Gigabit Ethernet, USB 2.0, CAN-FD, single-channel LVDS, MIPI DSI and MIPI CSI for connecting a camera are available. An on-board Wireless Module (optional) is provided as assembly options.

The typical design power ranges from 2 W to 4 W. The module is compliant with the new SMARC 2.2 standard, allowing easy integration with SMARC baseboards. For evaluation and design-in of the SMARC-iMX93 module, Embedian provides a development platform and a starter kit. Support for Yocto Linux is available.

The module is the ideal choice for a broad range of target markets including

- Audio and Speech Recognition
- Low-cost Gateway
- Domain Controller Compute Off-load Engine
- Public Address Systems
- Audio/Video (AV) Receivers
- Soundbar
- Wireless or Networked Speakers
- And more

Complete and cost-efficient Embedian evaluation kits for Yocto build allows

immediate and professional embedded product development with dramatically reduced design risk and time-to-market.

1.1 Features and Functionality

The SMARC-*i*MX93 module is based on the *i*.MX93 processor with dual cores Cortex-A55 from NXP. This processor offers a high number of interfaces. The module has the following features:

- SMARC 2.2 compliant in an 82mm x 50mm form factor.
- NXP i.MX93 Processor:
 - ◆ Dual x 1.7GHz ARM Cortex[™]-A55
 - ◆ Real-time 250Mhz ARM Cortex[™]-M33
 - ◆ ARM Ethos[™]-U65 microNPU (ML) 0.5 TOPS
 - PXP 2D GPU
- Memory:
 - Onboard 16GB *eMMC* Flash
 - Onboard 16-bit 1GB or 2GB LPDDR4
- Networking: 2 x 10/100/1000 Mbps Ethernet (1 Gbit Ethernet QoS with TSN supports)
- Display:
 - ♦ One 24-bit Single channel LVDS up to 1366x768@60Hz or 1280x800@60Hz.
 - ◆ *MIPI-DSI* up to 1080p60
- Expansion: 1 x SDHC/SDIO, 5x USB 2.0 (one OTG)
- USB: 4 x USB 2.0 Host, 1 x USB 2.0 OTG
- A single 4KB *EEPROM* is provided on I2C_GP that holds the board information. This information includes board name, serial number, and revision information.
- Additional Interface:
 - ♦ 4 x UARTs
 - ♦ 2 x SPI
 - ♦ 4 x I2C
 - ♦ 2 x I25
 - ◆ 2 × CAN-FD
 - ◆ 2×PWM
 - 1 x 2-Lane MIPI CSI (Camera Interface)
 - ♦ 12 x GPIOs

- ♦ WDT
- SW Support: Linux, Yocto Build
- Power Consumption (Typcal)

♦ 2W

- Thermal:
 - ◆ Commercial Temperature: 0°C ~ 70°C
 - ◆ Industrial Temperature: -40° ~85°C
- Power Supply
- 3V to 5.25V
- 1.8V module IO support (SMARC 2.2 compliant)

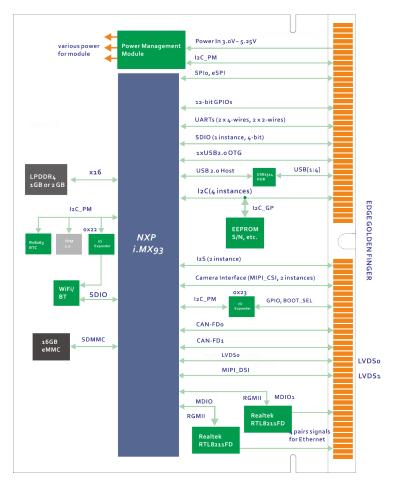
1.2 Module Variant

The SMARC-*i*MX93 module is available with various options based on processors in this family from *NXP*, *LPDDR*4 memory configuration, and operating temperature ranges.

SMARC-iMX93-<u>XY</u>-<u>Z</u>-<u>₩</u> ↑ ↑ ↑ 1 2 3

1. "1G" (1GB LPDDR4)

"2G" (2GB LPDDR4)


- 2. *"I*" Industrial temperature Leave it blank if commercial temperature.
- 3. "W" WiFi and Bluetooth Leave it blank if no need.

For example, SMARC-*i*MX93-1G-1 stands for 1GB LPDDR4 memory in industrial (-40°C-85°C) operating temperature without WiFi/BT module.

1.3 Block Diagram

The following diagram illustrates the system organization of the SMARC-*i*MX93. Arrows indicate direction of control and not necessarily signal flow.

Details for this diagram will be explained in the following chapters.

1.4 Software Support / Hardware Abstraction

The Embedian SMARC-*i*MX93 Module is supported by Embedian BSPs (Board Support Package). BSPs for other operating systems are planned. Check with your Embedian contact or Embedian's website for the latest BSPs.

This manual goes into a lot of detail on I/O particulars – information is provided on exactly how the various *SMARC* edge fingers tie into the NXP *i.MX93* SoC and to other Module hardware. This is provided for reference and context. Almost all of the I/O particulars are covered and abstracted in the BSP and it should generally not be necessary for users to deal with I/O at the register level.

1.5 Document and Standard References

1.5.1. External Industry Standard Documents

- *eMMC (Embedded Multi-Media Card)* the eMMC electrical standard is defined by JEDEC JESD84-B45 and the mechanical standard by JESD84-C44 (<u>www.jedec.org</u>).
- The I2C Specification, Version 2.1, January 2000, Philips Semiconductor (now NXP) (<u>www.nxp.com</u>).
- *I2S Bus Specification*, Feb. 1986 and Revised June 5, 1996, Philips Semiconductor (now NXP) (<u>www.nxp.com</u>).
- MXM3 Graphics Module Mobile PCI Express Module Electromechanical Specification, Version 3.0, Revision 1.1, © 2009 NVIDIA Corporation (www.mxm-sig.org).
- PICMG[®] EEEP Embedded EEPROM Specification, Rev. 1.0, August 2010 (<u>www.picmg.org</u>).
- SD Specifications Part 1 Physical Layer Simplified Specification, Version 3.01, May 18, 2010, © 2010 SD Group and SD Card Association (Secure Digital) (www.sdcard.org).
- SPI Bus "Serial Peripheral Interface" de-facto serial interface standard defined by Motorola. A good description may be found on Wikipedia (http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus).
- USB Specifications (<u>www.usb.org</u>).
- PCI Express Specifications (<u>www.pci-sig.org</u>)
- SPDIF (aka S/PDIF) ("Sony Philips Digital Interface)- IEC 60958-3
- *eSPI ("Enhanced Serial Peripheral Interface")* The eSPI Interface Base Specification is defined by Intel <u>https://downloadcenter.intel.com/de/download/22112</u>)
- **GBE MDI ("Gigabit Ethernet Medium Dependent Interface")** defined by IEEE 802.3. The 1000Base-T operation over copper twisted pair cabling defined by IEEE 802.3ab (<u>www.ieee.org</u>).
- *RS-232 (EIA "Recommended Standard 232")* this standard for asynchronous serial port data exchange dates from 1962. The original standard is hard to find. Many good descriptions of the standard can be found on-line, e.g. at Wikipedia, and in text books.

- *CSI-2 (Camera Serial Interface version 2)* The CSI-2 standard is owned and maintained by the MIPI Alliance ("Mobile Industry Processor Interface Alliance") (<u>www.mipi.org</u>).
- CSI-3 (Camera Serial Interface version 3) The CSI-3 standard is owned and maintained by the MIPI Alliance ("Mobile Industry Processor Alliance") (www.mipi.org)
- CAN FD ("Controller Area Network Flexible Data-Rate") Bus Standard ISO 11898-1

1.5.2. SGET Documents

- SMARC_Hardware_Specification_V220, version 2.2, June 12, 2024
- SMARC_Hardware_Specification_V210, version 2.1, March 23, 2020
- **SMARC_Hardware_Specification_V200**, version 2.0, June 2nd, 2016.
- SMARC_Hardware_Specification_V1p1, version 1.1, May 29, 2014.
- *SMARC_Design_Guide_V2.1.1,* version 2.1.1, April 29, 2021

1.5.3. Embedian Documents

The following documents are listed for reference. The Module schematic is not usually available outside of Embedian, without special permission. The other schematics will be available. Contact your Embedian representative for more information. The *SMARC* Evaluation Carrier Board Schematic is particularly useful as an example of the implementation of various interfaces on a Carrier board.

- SMARC Evaluation Carrier Board Schematic, PDF and OrCAD format
- SMARC Evaluation Carrier Board User's Manual
- SMARC-iMX93 User's Manual
- PinMux file for SMARC-iMX93
- SMARC-iMX93 Schematic Checklist

1.5.4. NXP Documents

- IMX93RM, i.MX 93 Applications Processor Reference Manual, 03/2024 (rev. 5)
- IMX93IEC, i.MX 93 Industrial Applications Processor Datasheet, 12/2023 (rev. 3)
- IMX93CEC, i.MX 93 Consumer Applications Processor Datasheet, 12 / 2023 (rev. 3)

1.5.5. NXP Development Tools

• CONFIG_TOOLS_FOR_IMX v16, Windows Installer, rev. 16, 07/2024

1.5.6. NXP Software Documents

• Linux 6.6.23_2.0.0

1.5.7. Embedian Software Documents

- Embedian Linux BSP for SMARC-iMX93 Module
- Embedian Linux BSP User's Guide
- Embedian Software Development Guide

Chapter

Specifications

This Chapter provides SMARC-*i*MX93 specifications. Section include :

- SMARC-iMX93 General Functions
- SMARC-iMX93 Debug
- Mechanical Specifications
- Electrical Specification
- Environment Specification

Chapter 2 Specifications

2.1 SMARC-iMX93 General Functions

2.1.1. SMARC-iMX93 Feature Set

This section lists the complete feature set supported by the SMARC-*i*MX93 module.

SMARC Feature Specification	<i>SMARC 2.2</i> <i>Specification Maximum Number Possible</i>	<i>SMARC-iMX93 Feature Support</i>	SMARC-iMX93 Feature Support Instances
LVDS LCD Display Support	2	Yes	1(single channel)
DP/eDP	1	No	N/A
HDMI Display Support	1	No	N/A
Serial Camera Support	2	Yes	2 (2 x 2-lane)
USB Interface	6	Yes	5 (1 x USB 2.0 OTG, 4 x USB 2.0)
PCIe Interface	4	No	N/A
SATA Interface	1	N/A	N/A
GbE Interface	1	Yes	1
2 nd GBE Interface	1	Yes	1
SDIO Interface (4bit)	1	Yes	1
SPI Interface	2	Yes	2
I25 Interface	2	Yes	2
I2C Interface	6	Yes	4
Serial	4	Yes	4

SMARC Feature Specification	<i>SMARC 2.2 Specification Maximum Number Possible</i>	<i>SMARC-iMX93 Feature Support</i>	<i>SMARC-iMX93 Feature Support Instances</i>
CAN	2	Yes	2 (CAN-FD)
VDDIO	1.8V	1.8V	1.8V

2.1.2. Form Factor

The SMARC-*i*MX93 module complies with the SMARC General Specification module size requirements in an 82mm x 50mm form factor.

2.1.3. CPU

The SMARC-*i*MX93 implements NXP's *i*.MX93 ARM Cortex-A55 and ARM Cortex-M33 processor.

NXP CPU	i.MX93
ARM Cortex-A55 cores	2 x 1.7GHz Cortex-A55
ARM Cortex-M33 cores	1x 250Mhz Cortex-M33
Memory Speed	X 16 LPDDR4x-3733 Inline ECC on the DDR bus
L2 Cache	64KB L2
Graphic	2D graphics capabilities within the PXP (pixel pipeline)
NPU	 Arm Ethos™-U65 microNPU with 0.5 TOP/s Neural Network performs 256 8x8 MAC's per cycle Keyword detect, noise reduction, beamforming Speech recognition (i.e. Deep Speech 2)

2.1.4. Onboard Storage

The *SMARC-iMX93* module supports a 16GB *eMMC* flash memory device, and a 32Kb I2C serial *EEPROM* on the Module *I2C_GP* (I2C3) bus. The device used is an On Semiconductor 24C32 equivalent. The Module serial EEPROM is intended to retain Module parameter information, including a module part number, revision number and serial number. The Module serial EEPROM data structure conforms to the PICMG® EEEP Embedded *EEPROM* Specification.). The onboard 16GB *eMMC* flash is used as boot media and operating systems. The module will always boot up from the onboard *eMMC* flash first. The firmware in *eMMC* flash will read the *BOOT_SEL* configuration from the boot selection and boot up the devices from that selected.

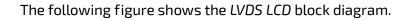
2.1.5. Clocks

A 24 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for CPU, BUS, and high-speed interfaces. For fractional PLLs, the 24 MHz clock from the oscillator can be directly used as the PLL reference clock. A 32.768 KHz clock is required for the *i.MX93* CPU RTC (Real Time Clock) and external (RV-8263-C8) RTC.

A 24Mhz crystal is used on on-module USB2514 USB hub.

The Realtek *RTL8211FD-CG* Ethernet PHY, *PCIe HCSL* clock generator is provided with a 25 MHz clock using a crystal in normal oscillation mode.

2.1.6 LVDS Interface


The SMARC-*i*MX93 implements one 24-bit single channel LVDS output streams.

The LVDS Display Bridge (*LDB*) from the NXP[®] *i.MX93* processor found on the *SMARC-iMX93* offers one *LVDS* channels, with up to 1366x768@60Hz or 1280x800@60Hz.

Note:

There are one *LCDIF* controllers in *i.MX93* processor that supports one of the following instances.

- MIPI DSI (up to 1920x1200@60Hz, on LVDS1 golden finger interface)
- LVDS (default, up to 1366x768@60Hz or 1280x800@60Hz, on lvds0 golden finger interface.)
- Parallel Display (no supported by SMARC)

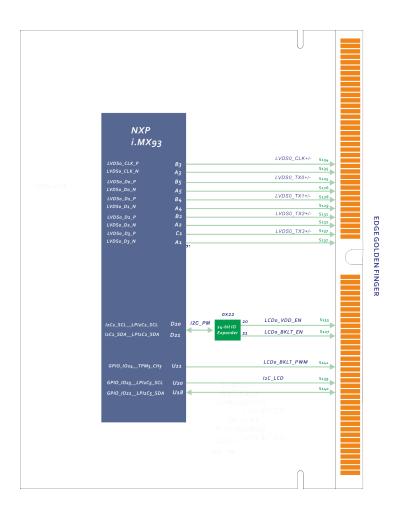


Figure 2 SMARC-iMX93 LVDS LCD Diagram

2.1.6.1 LVDS Signals

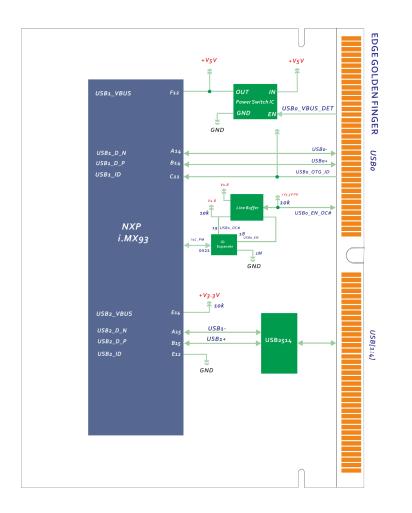
The LVDS signals data flow from *i*.MX93 processor to the golden finger connector is shown in the following table:

	NXP i.MX93 CPU			RC-iMX93 Edge olden Finger	Note
Ball	Mode	Pin Name	Pin#	Net Name	
B5	N/A	LVDS_D0_P	S125	LVDS0_D0+	LVDS0 LCD data channel differential
A5	N/A	LVDS_D0_N	S126	LVDS0_D0-	pairs 1
B4	N/A	LVDS_D1_P	S128	LVDS0_D1+	LVDS0 LCD data channel differential
A4	N/A	LVDS_D1_N	5129	LVDS0_D1-	pairs 2
B2	N/A	LVDS_D2_P	S131	LVDS0_D2+	LVDS0 LCD data channel differential
A2	N/A	LVDS_D2_N	5132	LVDS0_D2-	pairs 3
С1	N/A	LVDS_D3_P	S137	LVDS0_D3+	LVDS0 LCD data channel differential
B1	N/A	LVDS_TX3_N	S138	LVDS0_D3-	pairs 4
B3	N/A	LVDS_CLK_P	S134	LVDS0_CK+	LVDS0 LCD differential clock pairs
A3	N/A	LVDS_CLK_N	S135	LVDS0_CK-	

A 24 bit single channel *LVDS* implementation comprises 5 differential pairs: 4 pairs for control data and 1 pair for the *LVDS* clock.

2.1.6.2 Other LCD Control Signals

The signals in the table below support the LVDS LCD interfaces.


Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
LCD0_VDD_EN	Output	CMOS	High enables LVDS0 panel VDD
		1.8V	
LCD0_BKLT_EN	Output	CMOS	High enables LVDS0 panel backlight
		1.8V	
LCD0_BKLT_PWM	Output	CMOS	LVDS0 display backlight PWM control
		1.8V	
I2C_LCD_DAT	Bi-Dir	CMOS	I2C data – to read LCD display EDID EEPROMs
	OD	1.8V	
I2C_LCD_CK	Output	CMOS	I2C clock – to read LCD display EDID EEPROMs
		1.8V	

Below list *LCD* control signals that mapping to *CPU* iomux and *SMARC* edge connector.

	NXP i.MX93 CPU SMARC-iMX93 Edge Golden Finger		Net Names	Note		
Ball	Mode	Pin Name	Pin#	Pin Name		
Port 2	1 of i2c GPI	0 Expander A	S127	LCDO_BKLT_EN	LCDO_ BKLT_EN	High enables lvds0 panel backlight
Port 20	0 of i2c GP	10 Expander A	S133	LCD0_VDD_EN	LCDO_ VDD_EN	High enables lvds0 panel VDD
U21	ALT4	GPIO_IO24 TPM3_CH3	S141	LCDO_BKLT_ PWM	LCDO_ BKLT_ PWM	Lvds0 display backlight PWM control
U20	ALT16	GPIO_IO23 LPI2C5_SCL	S139	I2C_LCD_CK	I2C_ LCD_CK	I2C data – to read LCD display EDID EEPROMs
U18	ALT16	GPIO_IO22 LPI2C5_SDA	S140	I2C_LCK_DAT	I2C_ LCD_DAT	I2C data – to read LCD display EDID EEPROMs

2.1.7 USB Interface

The *Embedian SMARC-iMX93* module supports five USB 2.0 ports (USB 0:4). A Microchip USB2514 is used to expand four USB 2.0 ports from *i.MX93* USB2 2.0 Host Port. Per the *SMARC* specification, the module supports a USB "*On-The-Go*" (*OTG*) port capable of functioning either as a client or host device, on the *SMARC* USB0 port.

The following figure shows the USB 0:4 (USB2.0) block diagram.

Figure 3. USBO and USB1 Block Diagram

USB interface signals are exposed on the *SMARC-iMX93* edge connector as shown below:

	NXP i.MX93 CPU			ARC-iMX93 Edge Golden Finger	Net Names	Note
Ball	Mode	Pin Name	Pin#	Pin Name		
USB0 F	Port (USI	B 2.0 OTG)				
B14	ι	JSB1_D_P	P60	USB0+	USB0+	USB0 data pair
A14	ι	JSB1_D_N	P61	USB0-	USBO-	
and Port 19	8 (USB_E 9 (USB_C 0 expan	DC#)	P62	USBO_EN_OC#	USB0_EN_OC#	USB0 enable and over current pin
F12	-	Turn on JSB_OTG_VBUS	P63	USB0_VBUS_ DET	USBO_VBUS_ DET	USB0 host power detection, when this port is used as a device.
C11	ι	JSB1_ID	P64	USB0_OTG_ID	USB0_OTG_ID	USBO OTG ID input, active high

NXP i.MX93 CPU			ARC-iMX93 Edge Golden Finger	Net Names	Note	
Ball Mode	Pin Name	Pin#	Pin Name			
USB[1:4] Port (US	5B 2.0 Host)					
		P65	USB1+	USB1+	USB_DN3 of USB2514	
		P66	USB1-	USB1-		
From USB2514		P67	USB1_EN_OC#	USB1_EN_OC#	USB1 power enable/over current indication signal	
		P69	USB2+	USB2+	USB_DN1 of USB2514	
		P70	USB2-	USB2-	0302311	
From USB2514		P71	USB2_EN_OC#	USB2_EN_OC#	USB2 power enable/over current indication signal	
		S68	USB3+	USB3+	USB_DN2 of USB2514	
		S69	USB3-	USB3-	0382314	
From USB2514		P74	USB3_EN_OC#	USB3_EN_OC#	USB3 power enable/over current indication signal	
		S35	USB4+		USB_DN4 of USB2514	
		S36	USB4-			
From USB2514		P76	USB4_EN_OC#	USB4_EN_OC#	USB4 power enable/over current indication signal	

Note:

 If using USB Type-C connector, a PTN5110 cc logic needs to be added in your carrier board. Please refer to *i.MX93* evaluation board from NXP. The USB Type-C specification describes how the USB device uses pull-down/pull-up resistors on configuration channel pins to signify that it is a device or host.

2.1.7.1 USB Signals

The table below shows the USB related signals.

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
USB[0:4]+ USB[0:4]-	Bi-Dir	USB	Differential US 2.0 Data Pair
USB[0:4]_EN_OC#	Bi-Dir OD	CMOS 3.3V	 Pulled low by Module OD driver to disable USB0 power. Pulled low by Carrier OD driver to indicate over-current situation. A 10k pull-up is present on the Module to a 3.3V rail. The pull-up rail may be switched off to conserve power if the USB port is not in use. Further details may be found in Section 2.1.7.2 USBx_EN_OC# Discussion below.
USB0_VBUS_DET USB1_VBUS_DET	Input	USB VBUS 5V	USB host power detection, when this port is used as a device.
USB0_OTG_ID	Input	CMOS 3.3V	USB OTG ID input, active high.

2.1.7.2 USB[0:3]_EN_OC# Discussion

The Module USB[0:3]_EN_OC# pins are multi-function Module pins, with a 10k pull-up to a 3.3V rail on the Module, an OD driver on the Module, and, if the OC# (over-current) monitoring function is implemented on the Carrier, an OD driver on the Carrier. The use is as follows:

- 1) On the Carrier board, for external plug-in USB peripherals (USB memory sticks, cameras, keyboards, mice, etc.) USB power distribution is typically handled by USB power switches such as the Texas Instruments TPS2052B or the Micrel MIC2026-1 or similar devices. The Carrier implementation is more straightforward if the Carrier USB power switches have active-high power enables and active low open drain OC# outputs (as the TI and Micrel devices referenced do). The USB power switch Enable and OC# pins for a given USB channel are tied together on the Carrier. The USB power switch enable pin must function with a low input current. The TI and Micrel devices require 1 microampere or less, at a 3.3V enable voltage level.
- The Module drives USB[0:3]_EN_OC# low to disable the power delivery to the USBx device.
- 3) The Module floats *USB[0:3]_EN_OC#* to enable power delivery. The line is pulled to *3.3V* by the Module pull-up, enabling the Carrier board *USB* power switch.
- 4) If there is a USB over-current condition, the Carrier board USB power switch drives the USB[0:3]_EN_OC# line low. This removes the over-current condition (by disabling the USB switch enable input), and allows Module software to detect the over-current condition.
- 5) The Module software should look for a falling edge interrupt on USB[0:3]_EN_OC#, while the port is enabled, to detect the OC# condition. The OC# condition will not last long, as the USB power switch is disabled when the switch IC detects the OC# condition.
- 6) If the USB power to the port is disabled (USB[0:3]_EN_OC# is driven low by the Module) then the Module software is aware that the port is disabled, and the low input value on the port does not indicate an over-current condition (because the port power is disabled).

Carrier Board USB peripherals that are not removable often do not make use of USB power switches with current limiting and over-current detection. It is usually

deemed un-necessary for non-removable devices. In these cases, the *USB[0:3]_EN_OC#* pins may be left unused, or they may be used as *USB[0:3]* power enables, without making use of the over-current detect Module input feature.

The SMARC-*i*MX8MM Module USB power enable and over current indication logic implementation is shown in the following block diagram. There are 10k pull-up resistors on the Module on the SMARC USB[0:3]_EN_OC# lines. Outputs driving the USBx_EN_OC# lines are open-drain. The Carrier board USB power switch, if present, is enabled by USB[0:3]_EN_OC# after a device connection is detected on the DP/DM lines.

The Enable pin on the Carrier board USB power switch must be active high and the Over-Current pin (OC#) must be open drain, active low (these are commonly available). No pull-up is required on the USB power switch Enable or OC# line on carrier board; they are tied together on the Carrier and fed to the Module $USB[0:3]_{EN_{o}}OC#$ pin.

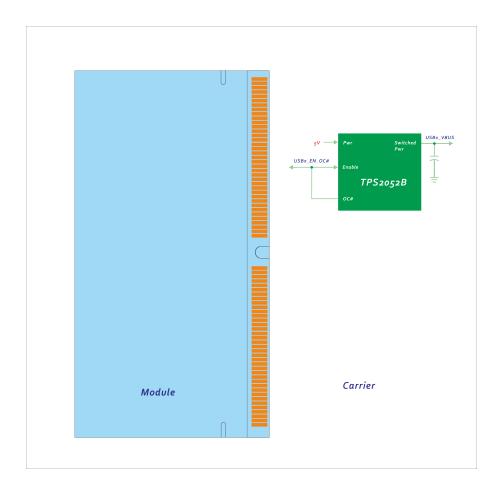


Figure 4. USB Power Distribution Implementation on Carrier

2.1.8. Gigabit Ethernet Controller (10/100/1000Mbps) Interface

The SMARC-*i*MX93 module supports two Gigabit Ethernet (10/100/1000Mbps) interfaces, one (*GBE0*) supporting Time Sensitive Networking (*TSN*), drive gateway applications with low latency. The Gigabit Ethernet controller interfaces are accomplished by using the low-power Realtek *RTL8211FD-CG* physical layer (PHY) transceiver with variable I/O voltage that is compliant with the *IEEE 802.3-2005* standards. The *RTL8211FD-CG* supports communication with an Ethernet MAC via a standard *RGMII* interface.

The Ethernet interface consists of 4 pairs of low voltage differential pair signals designated from $GBEO(1)_MDIO\pm$ to $GBEO(1)_MDI3\pm$ plus control signals for link activity indicators. These signals can be used to connect to a 10/100/1000 BaseT RJ45 connector with integrated or external isolation magnetics on the carrier board.

This is diagrammed below.

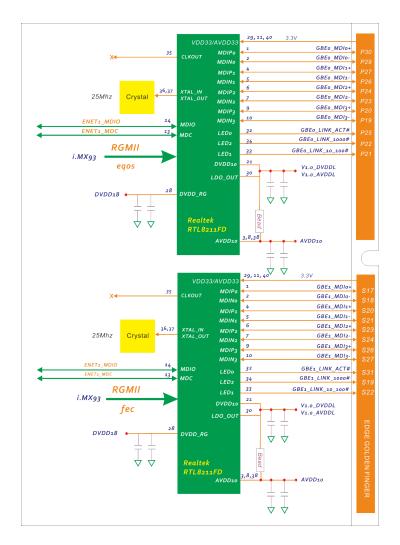


Figure 5 Gigabit Ethernet Connection from i.MX93 to Realtek RTL8211FD-CG

2.1.8.1. Path of Gigabit LAN1

i.MX93 processor and the first Realtek *RTL8211FD-CG* implementation is shown in the following table:

	NXP	i.MX93 CPU		ealtek 211FD-CG	Net Names	Note
Ball	Mode	Pin Name Pi	n# 1	Pin Name		
Gigab	it LAN1					
AA10	ALTO	ENET1_MDIO ENET_QOS_MDIO	14	MDIO	ENET1_MDIO	Serial Management Interface data input/output
AA11	ALT0	ENET1_MDC ENET_QOS_MDC	13	MDC	ENET1_MDC	Serial Management Interface clock
AA8	ALTO	ENET1_RD0 ENET_QOS_RGMII_RD0	25	RXD0	ENET1_RD0	Bit 0 of the 4 data bits that are sent by the transceiver on the receive path.
Y9	ALTO	ENET1_RD1 ENET_QOS_RGMII_RD1	24	RXD1	ENET1_RD1	Bit 1 of the 4 data bits that are sent by the transceiver on the receive path.
AA9	ALTO	ENET1_RD2 ENET_QOS_RGMII_RD2	23	RXD2	ENET1_RD2	Bit 2 of the 4 data bits that are sent by the transceiver on the receive path.
Y10	ALTO	ENET1_RD3 ENET_QOS_RGMII_RD3	22	RXD3	ENET1_RD3	Bit 3 of the 4 data bits that are sent by the transceiver on the receive path.
AA7	ALTO	ENET1_RXC CCM_ENET_QOS_CLOCK _GENERATE_RX_CLK	27	RXC	ENET1_RXC	Reference clock
Y8	ALTO	ENET1_RX_CTL ENET_QOS_RGMII_RX_ CTL	26	RXCTL	ENET1_RX_ CTL	Indicates both the receive data valid (RXDV) and receive error (RXER) functions per the

NXP i.MX93 CPU Realtek Net Names Note RTL8211FD-CG Ball Mode Pin Name Pin# Pin Name Gigabit LAN1 Indicates that valid V10 ALTO ENET1_TX_CTL__ 19 TXCTL ENET1_TX_ transmission data is ENET_QOS_RGMII_TX_ CTL present on TXD[3:0]. CTL W11 ALTO ENET1_TD0__ 18 TXD0 ENET1_TD0 The MAC transmits ENET_QOS_RGMII_TD0 data to the transceiver using this signal. T12 ALTO ENET1_TD1__ 17 TXD1 ENET1_TD1 The MAC transmits ENET_QOS_RGMII_TD1 data to the transceiver using this signal. U12 ALTO ENET1_TD2__ 16 TXD2 ENET1_TD2 The MAC transmits ENET_QOS_RGMII_TD2 data to the transceiver using this signal. V12 ALTO ENET1_TD3__ 15 TXD3 ENET1_TD3 The MAC transmits ENET_QOS_RGMII_TD3 data to the transceiver using this signal. U10 ALTO ENET1_TXC__ 20 ТХС ENET1_TXC Used to latch data CCM_ENET_QOS_CLOCK from the MAC into _GENERATE_TX_CLK the PHY. 1000BASE-T: 125MHz 100BASE-TX: 25MHz 10BASE-T: 2.5MHz INT# port 13 of i2c IO expander A 31 ENET1_INT# LAN1 interrupt pin

RGMII specification.

The path from *RTL8211FD-CG* to the golden finger edge connector is show in the following table.

	Realtek RTL8211FD-CG	Goli	den Finger Edge Connector	Net Names	Note
Pin	Pin Name	Pin#	Pin Name		
RTL8	211FD-CG PHY1				
1	MDIPO	P30	GbE_MDI0+	GBE_MDIO+	Differential Transmit/Receive Positive Channel 0
2	MDINO	P29	GbE_MDIO-	GBE_MDIO-	Differential Transmit/Receive Negative Channel 0
		P28	GbE_CTREF	GBE_CTREF	Center tap reference voltage
4	MDIP1	P27	GbE_MDI1+	GBE_MDI1+	Differential Transmit/Receive Positive Channel 1
5	MDIN1	P26	GbE_MDI1-	GBE_MDI1-	Differential Transmit/Receive Negative Channel 1
6	MDIP2	P24	GbE_MDI2+	GBE_MDI2+	Differential Transmit/Receive Positive Channel 2
7	MDIN2	P23	GbE_MDI2-	GBE_MDI2-	Differential Transmit/Receive Negative Channel 2
9	MDIP3	P20	GbE_MDI3+	GBE_MDI3+	Differential Transmit/Receive Positive Channel 3
10	MDIN3	P19	GbE_MDI3-	GBE_MDI3-	Differential Transmit/Receive Negative Channel 3

	Realtek RTL8211FD-CG	Gold	len Finger Edge Connector	Net Names	Note
Pin	Pin Name	Pin#	Pin Name		
RTLE	3211FD-CG PHY1				
32	LEDO	P25	GbE_LINK_ACT#	GBE_LINK_ACT #	Link / Activity Indication LED Driven low on Link (10, 100 or 1000
					(10, 100 01 1000 mbps)
					Blinks on Activity
					Could be able to sink 24mA or more Carrier LED current
33	LED1	P21	GbE_LINK100#	GBE_LINK100#	Link Speed Indication LED for 100Mbps
					Could be able to sink 24mA or more Carrier LED current
34	LED2	P22	GbE_LINK1000#	GBE_LINK1000#	Link Speed Indication LED for 1000Mbps
					Could be able to sink 24mA or more Carrier LED current

2.1.8.2. Path of Gigabit LAN2

i.MX93 processor and the second Realtek *RTL8211FD-CG* implementation is shown in the following table:

	NXP	i.MX93 CPU	RT	Realtek L8211FD-	Net N.	ames Note
Ball	Mode	Pin Name	Pin#	Pin Nar	ne	
Gigab	oit LAN 2					
AA6	ALTO	ENET2_MDIO ENET1_MDIO	14	MDIO	ENET_MDIO	Serial Management Interface data input/output
Y7	ALT0	ENET2_MDC ENET1_MDC	13	MDC	ENET_MDC	Serial Management Interface clock
AA4	ALTO	ENET2_RD0 ENET1_RGMII_RD0	25	RXDO	ENET_RD0	Bit 0 of the 4 data bits that are sent by the transceiver on the receive path.
Y5	ALT0	ENET2_RD1 ENET1_RGMII_RD1	24	RXD1	ENET_RD1	Bit 1 of the 4 data bits that are sent by the transceiver on the receive path.
AA5	ALT0	ENET2_RD2 ENET1_RGMII_RD2	23	RXD2	ENET_RD2	Bit 2 of the 4 data bits that are sent by the transceiver on the receive path.
Y6	ALTO	ENET2_RD3 ENET1_RGMII_RD3	22	RXD3	ENET_RD3	Bit 3 of the 4 data bits that are sent by the transceiver on the receive path.
AA3	ALT0	ENET2_RXC ENET1_RGMII_RXC	27	RXC	ENET_RXC	Reference clock
Y4	ALT0	ENET2_RX_CTL ENET1_RGMII_RX_ CTL	26	RXCTL	ENET_RX_ CTL	Indicates both the receive data valid (RXDV) and receive error (RXER) functions per the RGMII specification.

	NXP i.i	МХ93 СРИ	RT		ltek IIFD-CG	Net Names	Note
Ball	Mode	Pin Name	Pin#	Pi	n Name		
Gigab	it LAN 2						
V6	ALTO	ENET2_TX_CTL ENET1_RGMII_TX_C	TL	19	TXCTL	ENET_TX_CTL	Indicates that valid transmission data is present on TXD[3:0].
ТВ	ALTO	ENET_TDO ENET_QOS_RGMII_ TDO		18	TXDO	ENET_TD0	The MAC transmits data to the transceiver using this signal.
U8	ALTO	ENET_TD1 ENET_QOS_RGMII_ TD1		17	TXD1	ENET_TD1	The MAC transmits data to the transceiver using this signal.
V8	ALTO	ENET_TD2 ENET_QOS_RGMII_ TD2		16	TXD2	ENET_TD2	The MAC transmits data to the transceiver using this signal.
T10	ALTO	ENET_TD3 ENET_QOS_RGMII_ TD3		15	ТХДЗ	ENET_TD3	The MAC transmits data to the transceiver using this signal.
U6	ALTO	ENET_RGMII_TXC CCM_ENET_QOS_ CLOCK_GENERATE_ TX_CLK		20	ТХС	ENET_TXC	Used to latch data from the MAC into the PHY. 1000BASE-T: 125MHz 100BASE-TX: 25MHz 10BASE-T: 2.5MHz
port 1	4 of i2c 10	expander A		31	INT#	ENET1_INT#	LAN2 interrupt pin

The path from the second *RTL8211FD-CG* to the golden finger edge connector is show in the following table.

	Realtek RTL8211FD-CG	Ga	olden Finger Edge Connector	Net Name	s Note
Pin	Pin Name	Pin#	Pin Name		
RTL	3211FD-CG PHY 2				
1	MDIPO	S17	GBE1_MDI0+	GBE1_MDI0+	Differential Transmit/Receive Positive Channel 0
2	MDINO	S18	GBE1_MDIO-	GBE1_MDI0-	Differential Transmit/Receive Negative Channel 0
		S28	GBE1_CTREF	GBE1_CTREF	Center tap reference voltage
4	MDIP1	S20	GBE1_MDI1+	GBE1_MDI1+	Differential Transmit/Receive Positive Channel 1
5	MDIN1	S21	GBE1_MDI1-	GBE1_MDI1-	Differential Transmit/Receive Negative Channel 1
6	MDIP2	523	GBE1_MDI2+	GBE1_MDI2+	Differential Transmit/Receive Positive Channel 2
7	MDIN2	524	GBE1_MDI2-	GBE1_MDI2-	Differential Transmit/Receive Negative Channel 2
9	MDIP3	S26	GBE1_MDI3+	GBE1_MDI3+	Differential Transmit/Receive Positive Channel 3
10	MDIN3	S27	GBE1_MDI3-	GBE1_MDI3-	Differential Transmit/Receive Negative Channel 3

R	Realtek TL8211FD-CG	Golde	en Finger Edge Connecto	or Net Names	Note
Pin	Pin Name	Pin#	Pin Name		
RTL8	211FD-CG PHY 2				
32	LEDO	531	GBE1_LINK_ACT#	GBE1_LINK_ACT#	Link / Activity Indication LED
					Driven low on Link (10, 100 or 1000 mbps)
					Blinks on Activity
					Could be able to sink 24mA or more Carrier LED current
33	LED1	S19	GBE1_LINK100#	GBE1_LINK100#	Link Speed Indication LED for 100Mbps
					Could be able to sink 24mA or more Carrier LED current
34	LED2	522	GBE1_LINK1000#	GBE1_LINK1000#	Link Speed Indication LED for 1000Mbps
					Could be able to sink 24mA or more Carrier LED current

2.1.8.3. Gigabit LAN Signals

The table below shows the Gigabit LAN related signals.

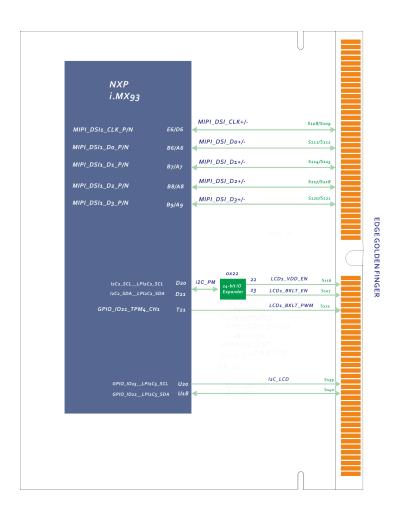
Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
GBEO(1)_MDIO+ GBEO(1)_MDIO-	Bi-Dir	GBE_MDI	Bi-directional transmit/receive pair 0 to magnetics (Media Dependent Interface)
GBEO(1)_MDI1+ GBEO(1)_MDI1-	Bi-Dir	GBE_MDI	Bi-directional transmit/receive pair 1 to magnetics (Media Dependent Interface)
GBEO(1)_MDI2+ GBEO(1)_MDI2-	Bi-Dir	GBE_MDI	Bi-directional transmit/receive pair 2 to magnetics (Media Dependent Interface)
GBEO(1)_MDI3+ GBEO(1)_MDI3-	Bi-Dir	GBE_MDI	Bi-directional transmit/receive pair 3 to magnetics (Media Dependent Interface)
GBE0(1)_100#	Output OD	CMOS 3.3V	Link Speed Indication LED for 100Mbps Could be able to sink 24mA or more Carrier
GBE0(1)_1000#	Output	CMOS	LED current Link Speed Indication LED for 1000Mbps
GBE0(1)_LINK_ACK#	OD Output	3.3V CMOS	Could be able to sink 24mA or more Carrier LED current Link / Activity Indication LED
UBEO(I)_LINK_ACK#	OD	3.3V	Driven low on Link (10, 100 or 1000 mbps) Blinks on Activity
			Could be able to sink 24mA or more Carrier LED current
GBEO(1)_CTREF	Output	Reference Voltage	Center-Tap reference voltage for GBE0 Carrier board Ethernet magnetic (not required by the Module GBE PHY)

2.1.8.4. Suggested Magnetics

Listed below are suggested magnetics.

For normal temperature (0°C ~70°C) products.

Vendor	P/N	Package	Cores	Temp	Configuration
Halo	HFJ11-1G02E	Integrated RJ45	8	0°C~70°C	HP Auto-MDIX
UDE	RB1-BA6BT9WA	Integrated RJ45	8	-40°C~85°C	HP Auto-MDIX
Halo	TG1G-S002NZRL	24-pin SOIC-W	8	0°C~70°C	HP Auto-MDIX


For industrial temperature (-40°C ~85°C) products.

Vendor	P/N	Package	Cores	Temp	Configuration
UDE	RB1-BA6BT9WA	Integrated RJ45	8	-40°C~85°C	HP Auto-MDIX
Halo	TG1G-E012NZRL	24-pin SOIC-W	8	-40°C~85°C	HP Auto-MDIX

2.1.9 MIPI-DSI Interface

The SMARC-*i*MX93 implements one 4-lane *MIPI-DSI* output streams that are shared with *LVDS1* interface that is defined in SMARC 2.0 edge connector interface.

The *MIPI-DSI LCD* signals found on the *SMARC-i.MX93* offers one 4-lane channels, with resolutions up to $1,920 \times 1,200 \oplus 60$ fps at 24 bpp. They are generated from *MIPI_DSI1* signals from the *NXP® i.MX93* processor.

The following figure shows the MIPI DSI LCD block diagram.

Figure 6 SMARC-iMX93 MIPI-DSI LCD Diagram

2.1.9.1 MIPI-DSI Signals Data Flow

The *MIPI-DSI* signals from *i.MX93* processor to the golden finger connector is shown in the following table:

	NXP i.MX93 CPU			RC-iMX93 Edge olden Finger	Note
Ball	Mode	Pin Name	Pin#	Net Name	
MIPI C)SI				
A16	N/A	MIPI_DSI1_D0_P	S111	LVDS1_0+ / eDP1_TX0+ / DSI1_D0+	MIPI DSI LCD data channel differential pairs 1
B16	N/A	MIPI_DSI1_D0_N	5112	LVDS1_0- / eDP1_TX0- / DSI1_D0-	puirs i
A17	N/A	MIPI_DSI1_D1_P	S114	LVDS1_1+ / eDP1_TX1+ / DSI1_D1+	MIPI DSI LCD data channel differential
B17	N/A	MIPI_DSI1_D1_N	S115	LVDS1_1- / eDP1_TX1- / DSI1_D1-	pairs 2
A19	N/A	MIPI_DSI1_D2_P	S117	LVDS1_2+ / eDP1_TX2+ / DSI1_D2+	MIPI DSI LCD data channel differential
B19	N/A	MIPI_DSI1_D2_N	S118	LVDS1_2- / eDP1_TX2- / DSI1_D2-	pairs 3
A20	N/A	MIPI_DSI1_D3_P	S120	LVDS1_3+ / eDP1_TX3+ / DSI1_D3+	MIPI DSI LCD data channel differential pairs 4
B20	N/A	MIPI_DSI1_D3_N	S121	LVDS1_3- / eDP1_TX3- / DSI1_D3-	puirs 4
A18	N/A	MIPI_DSI1_CLK_P	S108	LVDS1_CK+ / eDP1_AUX+ / DSI1_CLK+	MIPI DSI LCD differential clock pairs
B18	N/A	MIPI_DSI1_CLK_N	S109	LVDS1_CK- / eDP1_AUX- / DSI1_CLK-	puns

2.1.9.2 MIPI DSI Signals

The table below shows the *MIPI DSI* related signals.

Edge Golden Finder Signal Name	Direction	Coupling Tolerance	Description
DSI1_LANE[0:3]+	Output	AC Coupled off module	DSI Data Pair [0:3] positive
DSI1_LANE[0:3]-	Output	AC Coupled off module	DSI Data Pair [0:3] negative

2.1.9.3 Other LCD Control Signals

The signals in the table below support the *MIPI LCD* interfaces (as these are created from the same *i.MX93* source).

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
LCD1_VDD_EN	Output	CMOS	High enables DSI1 panel VDD
		1.8V	
LCD1_BKLT_EN	Output	CMOS	High enables DSI1 panel backlight
		1.8V	
LCD1_BKLT_PWM	Output	CMOS	DSI1 display backlight PWM control
		1.8V	

Below list *LCD* control signals that mapping to *CPU* iomux and *SMARC* edge connector.

	NXP i.MX93 CPU			RC-iMX93 Edge olden Finger	Net Names	Note
Ball	Mode	Pin Name	Pin#	Pin Name		
Port 2.	3 of i2c GPI	10 Expander A	S107	LCD1_BKLT_EN	LCD1_ BKLT_EN	High enables lvds1 panel backlight
Port 2.	2 of i2c GPI	10 Expander A	S116	LCD1_VDD_EN	LCD1_ VDD_EN	High enables lvds1 panel VDD
T21	ALT6	GPIO_IO21 TPM4_CH1	5122	LCD1_BKLT_ PWM	LCD1_ BKLT_ PWM	Lvds1 display backlight PWM control
U20	ALT16	GPIO_IO23 LPI2C5_SCL	S139	I2C_LCD_CK	I2C_ LCD_CK	I2C data – to read LCD display EDID EEPROMs
U18	ALT16	GPIO_IO22 LPI2C5_SDA	5140	I2C_LCK_DAT	I2C_ LCD_DAT	I2C data – to read LCD display EDID EEPROMs

2.1.10. MIPI/CMOS Serial Camera Interface (MIPI-CSI)

The *NXP® i.MX93* provides connectivity to cameras via the *MIPI/CSI-2* transmitter and maintains image manipulation and processing with adequate synchronization and control. The Camera Serial Interface (*CSI*) controls the camera port and provides interface to an image sensor or a related device. The role of the camera ports is to receive input from video sources and to provide support for time-sensitive signals to the camera. Non-time-sensitive controls such as configuration, reset are performed by the ARM platform through I2C interface or GPIO signals.

The camera interface on *SMARC-iMX93* is designed as serial interfaces on *CSI0* pin groups that can support 2 lanes providing an interface between the system and the *MIPI* D-PHY, allowing communication with an *MIPI CSI-2* compliant camera sensor.

The *MIPI-CSI2* in *SMARC-iMX93* offers a 2-lane MIPI-CSI camera interface capable of supporting 1080-p60 resolution and enables direct connection to external camera module and ISP.

The following figure shows the serial camera interface block diagram.

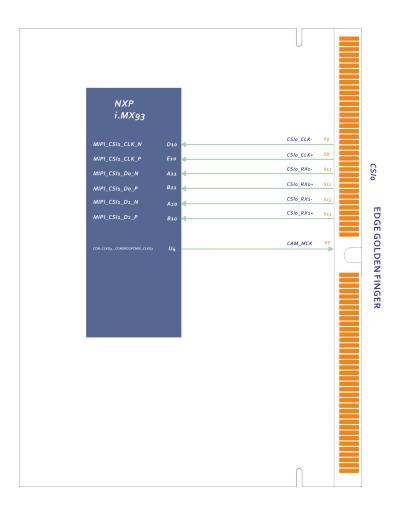


Figure 7 MIPI/Serial Camera Interface Block Diagram

*MIPI/*Serial Camera interface signals are exposed on the *SMARC-iMX93* edge connector as shown below:

	NXP i.MX93 CPU		RC-iMX93 Te Golden Finger	Net Names	Note
Ball	Mode Pin Name	Pin#	Pin Name		
MIPI/	Serial Camera Interface (CSI0)				
U4	ALTO CCM_CLKO3 CCMSRCGPCMIX_CLKO	56 3	CAM_MCK	САМ_МСК	Master clock output for CSI camera support
D10	MIPI_CSI1_CLK_N	59	CSI0_CK-	CSI0_CK-	CSI0
E10	MIPI_CSI1_CLK_P	58	CSI0_CK+	CSI0_CK+	differential clock inputs
A11	MIPI_CSI1_D0_N	512	CSI0_RX0-	CSI0_D0-	
B11	MIPI_CSI1_D0_P	S11	CSI0_RX0+	CSI0_D0+	CSI0
A10	MIPI_CSI1_D1_N	S15	CSI0_RX1-	CSI0_D1-	differential data inputs
B10	MIPI_CSI1_D1_P	514	CSI0_RX1+	CSI0_D1+	

2.1.10.1. Camera I2C Support

The I2C_CAMO port is intended to support serial and parallel cameras. Most contemporary cameras with I2C support allow a choice of two I2C address ranges.

	NXP i.MX93 CPU		SMARC-iMX93 Edge Golden Finger		Net Names	Note		
Ball	Mode	Pin Name	Pin#	Pin Name				
12C_C	AMO							
C20	ALT0	I2C1_SCL LPI2C1_SCL	S5	CSIO_TX+/ I2C_CAMO_CK	I2C_CAM0_CK			
C21	ALT0	I2C1_SDA LPI2C1_SDA	57	CSIO_TX-/ I2C_CAMO_DAT	I2C_CAMO_DAT			
CSI Cl	CSI Clock Output							
U4	ALT0	CCM_CLKO3 CCMSRCGPCMIX_CLKO3	56	САМ_МСК	САМ_МСК			

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
I2C_CAM0			
I2C_CAMO_DAT	Bi-Dir OD	CMOS 1.8V	Serial camera support link - I2C data
I2C_CAM0_CK	Bi-Dir OD	CMOS 1.8V	Serial camera support link - I2C clock

Note:

Embedian BSP and development board (EVK-STD-CARRIER-S20) supportsCoralOV5645cameramodule(P/N:G840-00180-01,https://coral.ai/products/camera/)

2.1.10.2. MIPI Serial Camera In – MIPI CSIO

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
MIPI_CSI0_D[0:1]+ MIPI_CSI0_D[0:1]-	Input	LVDS D-PHY	CSI1 differential data inputs
MIPI_CSIO_CK+ MIPI_CSIO_CK-	Input	LVDS D-PHY	CSI1 differential clock inputs
CAM_MCK	Output	CMOS	Master clock output for CSI1 camera support
		1.8V	

2.1.11 SD/SDMMC Interface

SMARC-iMX93 is configured to support three *MMC* controllers. One is used for on-module 8-bit *eMMC* (*SD1*), and one is used for external *SDHC/SDIO* interface (*SD2*) and another one is used for on-module Murata *LBES5PL2EL* Wi-Fi 11a/b/g/n/ac/ax + Bluetooth 5.3 module (optional, *SD3*).

The SMARC-*i*MX93 module supports one 4-bit SDIO interface, per the SMARC 2.0 specification. The SDIO interface uses 3.3V signaling, per the SMARC spec and for compatibility with commonly available SDIO cards.

The following figure shows the SDIO block diagram.

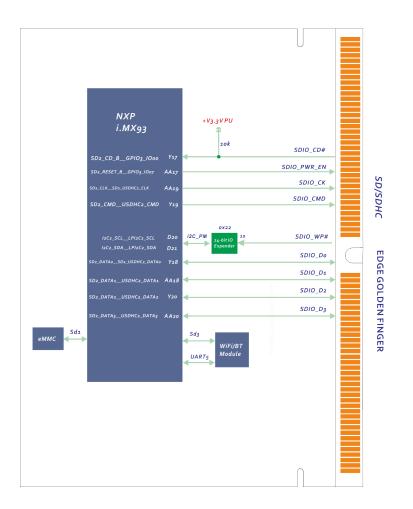


Figure 8 SD/SDIO/eMMC Interface Block Diagram

SDIO interface signals are exposed on the *SMARC* golden finger edge connector as shown below:

	NXP i.I	ИХ93 СРИ		C-iMX8M Edge lden Finger	Net Names	Note
Ball	Mode	Pin Name	Pin#	Pin Name		
SD/SD	10					
Y18	ALTO	SD2_DATA0 USDHC2_DATA0	P39	SDIO_DO	SDIO_DO	SDIO Data 0
AA18	ALTO	SD2_DATA1 USDHC2_DATA1	P40	SDIO_D1	SDIO_D1	SDIO Data 1
Y20	ALTO	SD2_DATA2 USDHC2_DATA2	P41	SDIO_D2	SDIO_D2	SDIO Data 2
AA20	ALTO	SD2_DATA3 USDHC2_DATA3	P42	SDIO_D3	SDIO_D3	SDIO Data 3
Port 10) of i2c GI	PIO expander A	P33	SDIO_WP	SDIO_WP	SDIO write protect signal
Y19	ALTO	SD2_CMD USDHC2_CMD	P34	SDIO_CMD	SDIO_CMD	SDIO Command signal
Y17	ALT5	SD2_CD_B GPIO3_I000	P35	SDIO_CD#	SDIO_CD#	SDIO card detect
AA19	ALTO	SD2_CLK USDHC2_CLK	P36	SDIO_CK	SDIO_CK	SDIO Clock Signal
AA17	ALT5	SD2_RESET_B GPIO2_IO19	P37	SDIO_PWR _EN	SDIO_PWREN	SD card power enable

Note:

- 1. The SDIO card power should be switched on the Carrier board and the SDIO lines should be ESD protected. The SMARC Evaluation Carrier schematic is useful as an implementation reference.
- If SD boot up function is required, the pull-up resistor to 3.3V of SDIO_PWR_EN # should be 4.7k or less.
- 3. SDIO_WP and SDIO_CD# are 10k pull up to 3.3V on module.

2.1.11.1. SDIO Card (4 bit) Interface

The Carrier SDIO Card can be selected as the Boot Device (See section 4.3).

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
SDIO_D[0:3]	Bi-Dir	CMOS 3.3V	4 bit data path
SDIO_CMD	Bi-Dir	CMOS 3.3V	Command Line
SDIO_CK	Output	CMOS 3.3V	Clock
SDIO_WP	Input	CMOS 3.3V	Write Protect
SDIO_CD#	Input	CMOS 3.3V	Card Detect
SDIO_PWR_EN	Output	CMOS 3.3V	SD Card Power Enable

Note:

SD Cards are not typically available with a 1.8V I/O voltage. The Module SD Card I/O level is specified as 3.3V and **not** CMOS 1.8V.

2.1.11.2. WiFi/BT Module (Optional)

A Murata *LBES5PL2EL* Wi-Fi 11a/b/g/n/ac/ax + Bluetooth 5.3 module is provided on *SMARC-iMX93* as an option. This section describes the path implementation.

The following figure shows the *WiFi/BT* connection block diagram.

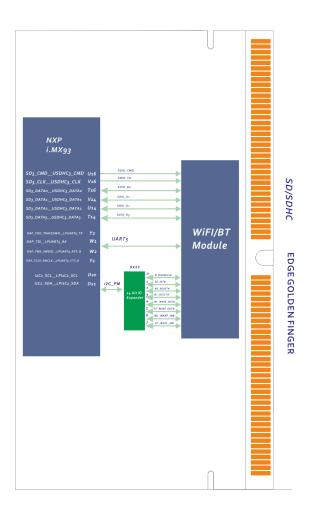


Figure 9 WiFi/BT Interface Block Diagram

i.MX93 processor and Murata *LBES5PL2EL Wi-Fi* module implementation is shown in the following table:

NXP i.MX93 CPU			Aurata SSPL2EL	Net Names	Note	
Ball	Mode	Pin Name	Pin#	Pin Name		
	-) expander A O expander A	10	PNn	W_DISABLE1# WLAN_PWR_EN	Full Power-down (input) (active low)
U16	ALT0	SD3_CMD USDHC3_CMD	42	SD_CMD	SD3_CMD	SDIO Command signal
V16	ALTO	SD3_CLK USDHC3_CLK	44	SD_CLK	SD3_CLK	SDIO Clock signal
V14	ALT0	SD3_DATA1 USDHC3_DATA1	45	SD_DAT[1]	SD3_DATA1	SDIO Data 1
T14	ALT0	SD3_DATA3 USDHC3_DATA3	46	SD_DAT[3]	SD3_DATA3	SDIO Data 3
U14	ALT0	SD3_DATA2 USDHC3_DATA2	47	SD_DAT[2]	SD3_DATA2	SDIO Data 2
T16	ALT0	SD3_DATA0 USDHC3_DATA0	48	SD_DAT[0]	SD3_DATA0	SDIO Data O
W1	ATL6	DAP_TDI LPUART5_RX	49	UART_TX	UART5_TXD	Asynchronous serial port data out
W2	ATL6	DAP_TMS_SWDIO LPUART5_RTS_B	50	UART_CTS	UART5_CTS#	Clear to Send handshake line
Y2	ALT6	TDO_TRACESWO LPUART5_TX	51	UART_RX	UART5_RXD	Asynchronous serial port data in
Y1	ALT6	DAP_TCLK_SWCLK LPUART5_CTS_B	52	UART_RTS	UART5_RTS#	Clear to Send handshake line

NXP i.MX93 CPU		Aurata SSPL2EL	Net Names	Note
Ball Mode Pin Name	Pin#	Pin Name		
Port 2 of i2c IO expander A	63	IND_RST_ WL	WL_RESET#	Independent software reset for Wi-Fi
Port 3 of i2c I0 expander A	64	IND_RST_ BT	BT_RESET#	Independent software reset for Bluetooth
Port 1 of i2c IO expander A	72	SD_INT	SD_INT#	Out-of-band SDIO interface interrupt signal.
Port 4 of i2c 10 expander	73	WL_WAKE_ OUT	WL_WAKE_ OUT#	Wi-Fi radio wake-up output signal.
Port 6 of i2c 10 expander	74	WL_WAKE_ IN	WL_WAKE_ IN#	Wi-Fi radio wake-up input signal.
Port 7 of i2c IO expander	75	BT_WAKE_ IN	BT_WAKE_ IN#	Bluetooth/802.1 5.4 radio wake-up input signal.
Port 5 of i2c IO expander	76	BT_WAKE_ OUT	BT_WAKE_ OUT#	Bluetooth/802.1 5.4 radio wake-up output signal.

2.1.12 SPI/SPI1 Interface

The SMARC-*i*MX93 module supports two NXP *i*.MX93 SPI interfaces (LPSPI) that are available off-Module for general purpose use. Each SPI channel has two chip-selects that can connect two SPI slave devices on each channel. SPI devices will share the "SPI0_DIN", "SPI0_DO" and "SPI0_CK" pins, but each device will have its own chip select pin. The chip select signal is a low active signal.

The SPI interface is diagramed below.

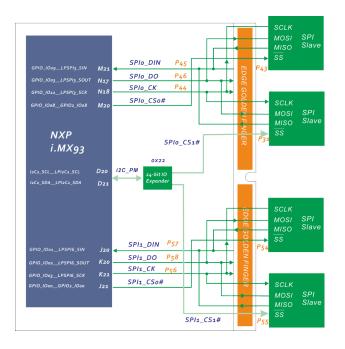


Figure 10 SPI Interface Block Diagram

SPI interface signals are exposed on the SMARC golden finger edge connector as shown below:

	NXP i.	МХ93 СРИ	Edg	RC-iMX93 Te Golden Finger	Net Names	Note
Ball	Mode	Pin Name	Pin#	Pin Name		
SPIO P	Port					
M20	ALTO	GPIO_IO08 GPIO2_IO08	P43	SPI0_CS0#	SPIO_CSO#	SPIO Master Chip Select 0 output
Port 1	6 of i2c GF	PIO expander A	P31	SPI0_CS1#	SPI0_CS1#	SPIO Master Chip Select 1 output
N18	ALT1	GPIO_IO11 LPSPI3_SCK	P44	SPIO_CK	SPIO_SCLK	SPIO Master Clock output
M21	ALT1	GPIO_1009 LPSPI3_SIN	P45	SPIO_DIN	SPIO_DIN	SPIO Master Data input (input to CPU, output from SPI device)
N17	ALT1	GPIO_IO10 LPSPI3_SOUT	P46	SPIO_DO	SPIO_DO	SPIO Master Data output (output from CPU, input to SPI device)

	NXP i.N	1X93 CPU		iMX93 Edge en Finger	Net Names	Note
Ball	Mode	Pin Name	Pin# P	Pin Name		
eSPI/	SPI1 Port					
J21	ALTO	GPIO_I000 GPIO2_I000	P54	ESPI_CS0#	ESPI_CSO#/ SPI1_CSO#	ESPI Master Chip Select 0 output
Port 1	7 of i2c GI	PIO expander A	P55	ESPI_CS1#	ESPI_CS1#/ SPI1_CS1#	ESPI Master Chip Select 1 output
K21	ALT4	GPIO_1003 LPSPI6_SCK	P56	ESPI_CK	ESPI_CK/ SPI1_CK	ESPI Master Clock output
K20	ALT4	GPIO_IOO2 LPSPI6_SOUT	P58	ESPI_IO_O	ESPI_IO_0/ SPI1_DO	ESPI Master Data input (input to CPU, output from SPI device)
JZO	ALT4	GPIO_1001 LPSPI6_SIN	P57	ESPI_IO_1	ESPI_IO_1/ SPI1_DI	ESPI Master Data output (output from CPU, input to SPI device)
			S56	ESPI_10_2	ESPI_IO_2	Not Connected
			S57	ESPI_IO_3	ESPI_IO_3	Not Connected
			558	ESPI_RESET #	ESPI_RESET #	Not Connected

2.1.12.1. SPIO Signals

SMARC-*i*MX93 does not support SPIO device boot up. The Carrier SPIO device cannot be selected as the Boot Device – see Section 4.3 Boot Select.

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
SPI0_CS0#	Output	CMOS 1.8V	SPIO Master Chip Select 0 output
SPI0_CS1#	Output	CMOS 1.8V	SPI0 Master Chip Select 1 output
SPIO_CK	Output	CMOS 1.8V	SPI0 Master Clock output
SPIO_DIN	Input	CMOS 1.8V	SPI0 Master Data input (input to CPU, output from SPI device)
SPIO_DO	Output	CMOS 1.8V	SPIO Master Data output (output from CPU, input to SPI device)

2.1.12.2. ESPI/SPI1 Signals

SMARC-*i*MX93 does not support *ESPI* device boot up either. The Carrier *ESPI* device cannot be selected as the Boot Device – see Section 4.3 Boot Select.

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
ESPI_CSO#/ SPI1_CSO#	Output	CMOS 1.8V	ESPI Master Chip Select 0 output
ESPI_CS1#/ SPI1_CS1#	Output	CMOS 1.8V	ESPI Master Chip Select 1 output
ESPI_CK/ SPI1_CK	Output	CMOS 1.8V	ESPI Master Clock output
ESPI_IO_[0:1]/ SPI1_[D0:DIN]	Bi-Dir	CMOS 1.8V	ESPI Master Data input/output
ESPI_RESET#	Output	CMOS 1.8V	Not Supported
ESPI_ALERT[0:1]#	Input	CMOC 1.8V	Not Supported

2.1.13. I2S Interface

The *SMARC-iMX93* module uses *I2S* format for Audio signals. These signals are derived from the Synchronous Audio Interface (*SAI*) of the *NXP® i.MX93* processor. The Serial Audio Interface (SAI) implements a synchronous serial bus interface for connecting digital audio devices. It is by far the most common mechanism used to transfer two channels of audio data between devices within a system.

SMARC-*i*MX93 supports two I2S instances (I2SO and I2S2). I2S interface signals are exposed on the SMARC-*i*MX93 golden finger edge connector as shown below:

	NXP i.MX93 CPU			RC-iMX93 Edge olden Finger	• Net Names	Note
Ball	Mode	Pin Name	Pin#	Pin Name		
R20	ALT1	GPIO_IO17 SAI3_MCLK	S38	AUDIO_MCK	AUD_MCLK	Master clock output to Audio codecs
1250 in	iterface					
V20	ALT7	GPIO_IO26SAI 3_TX_SYNC	539	I2SO_LRCK	I2SO_LRCK	Left& Right audio synchronization clock
R17	ALT7	GPIO_IO19 SAI3_TX_DATAO O	54 0	I2S0_SDOUT	I2S0_SDOUT	Digital audio Output
T20	ALT1	GPIO_IO2O SAI3_RX_DATAO O	541	I2S0_SDIN	I2S0_SDIN	Digital audio Input
R21	ALT1	GPIO_IO16SAI 3_TX_BCLK	S42	I2S0_CK	I2S0_CK	Digital audio clock
1252 in	terface					
G21	ALTO	SAI1_TXFS SAI1_TX_SYNC	S50	HDA_SYNC/ I2S2_LRCK	I2S2_LRCK	Left& Right audio synchronization clock
H21	ALT0	SAI1_TXD0 SAI1_TX_DATA0 0	S51	HDA_SDO/ I2S2_SDOUT	I2S2_SDOUT	Digital audio Output
H20	ALTO	SAI1_RXD0SA I1_RX_DATA00	S52	HDA_SDI⁄ I2S2_SDIN	I2S2_SDIN	Digital audio Input
G20	ALT0	SAI1_TXC SAI1_TX_BCLK	S53	HAD_CK/ I2S2_CK	I2S2_CK	Digital audio clock

Note:

SGTL5000 I2S audio codec is used in *EVK-STD-CARRIER-S20* evaluation carrier board.

2.1.13.1 I25 Signals

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
AUDIO_MCK	Output	CMOS 1.8V	Master clock output to Audio codecs
12S0 Signals			
I2SO_LRCK	Bi-Dir	CMOS 1.8V	Left& Right audio synchronization clock
I2S0_SDOUT	Output	CMOS 1.8V	Digital audio Output
1250_SDIN	Input	CMOS 1.8V	Digital audio Input
I250_CK	Bi-Dir	CMOS 1.8V	Digital audio clock
1252 Signals			
I2S2_LRCK	Bi-Dir	CMOS 1.8V	Left& Right audio synchronization clock
I2S2_SDOUT	Output	CMOS 1.8V	Digital audio Output
I2S2_SDIN	Input	CMOS 1.8V	Digital audio Input
I252_CK	Bi-Dir	CMOS 1.8V	Digital audio clock

2.1.14. Asynchronous Serial Port (UARTs)

The SMARC-*i*MX93 module supports four UARTs (SER0:3). UART SER0 and SER2 support flow control signals (*RTS#*, *CTS#*). UART SER1 and SER3 do not support flow control (*TX*, *RX* only). When working with software, SER3 is used for SMARC-*i*MX93 debugging console port.

The module asynchronous serial port signals have a *VDDIO* (*1.8V*) level signal swing. If the asynchronous ports are to interface with RS232 level devices, then a Carrier RS-232 transceiver is required. The logic side of the transceiver must be able to run at 1.8V levels. The selection of 1.8V compatible transceivers is a bit limited, although more are appearing with time. Two such devices are the Texas Instruments TRS3253E, and the Maxim MAX13235E, illustrated in the figures below. The TI part is more cost effective, but has a top speed of 1 Mbps. The MAX 13235E can operate at maximum speeds over 3 Mbps. The transceivers invert the polarity of the incoming and outgoing data and handshake lines.

The other alternative is to use a level-shift IC from 1.8V to 3.3V when designing carrier board and almost all transceivers available accept a 3.3V signal level: example includes the Texas Instruments MAX3243. Note that RS232 transceivers invert the signal; a logic '1' is a negative voltage (-3.0V to -15V) and a logic '0' a positive voltage (3.0V to 15V) on the RS232 line.

Asynchronous serial ports interface signals are exposed on the SMARC golden finger edge connector as shown below:

	NXP i.MX93 CPU			C-iMX93 Edge den Finger	Net Names	Note
Ball	Mode	Pin Name	Pin#	Pin Name		
SERO	Port					
L17	ALT5	GPIO_IOO4 LPUART6_TX	P129	SER0_TX	SER0_TX	Asynchronous serial port data out
L18	ALT5	GPIO_IO05 LPUART6_RX	P130	SER0_RX	SER0_RX	Asynchronous serial port data in
L20	ALT5	GPIO_IOO6 LPUART6_CTS_B	P131	SERO_RTS #	SER0_RTS#	Request to Send handshake line for SER0
L21	ALT5	GPIO_IOO7 LPUART6_RTS_B	P132	SER0_CTS#	SER0_CTS#	Clear to Send handshake line for SER0
SER1 F	Port					
F21	ALTO	UART2_TXD LPUART2_TX	P134	SER1_TX	SER1_TX	Asynchronous serial port data out
F20	ALTO	UART2_RXD LPUART2_RX	P135	SER1_RX	SER1_RX	Asynchronous serial port data in

	NXP i.MX93 CPU			-iMX93 Edge len Finger	Net Names	Note
Ball	Mode	Pin Name	Pin#	Pin Name		
SER2 Pa	ort					
N20	ALT5	GPIO_IO12 LPUART8_TX	P136	SER2_TX	SER2_TX	Asynchronous serial port data out
N21	ALT5	GPIO_IO13 LPUART8_RX	P137	SER2_RX	SER2_RX	Asynchronous serial port data in
P21	ALT5	GPIO_IO15 LPUART8_RTS_B	P138	SER2_RTS#	SER2_RTS#	Request to Send handshake line for SER2
P20	ALT5	GPIO_IO14 LPUART8_CTS_B	P139	SER2_CTS#	SER2_CTS#	Clear to Send handshake line for SER2
SER3 Pa	ort (Debi	ugging Port)				
E21	ALT0	UART1_TXD LPUART1_TX	P140	SER3_TX	SER3_TX	Asynchronous serial port data out
E20	ALT0	UART1_RXD LPUART1_RX	P141	SER3_RX	SER3_RX	Asynchronous serial port data in

2.1.14.1. UART Signals

Module pins for up to four asynchronous serial ports are defined. The ports are designated *SER0* – *SER3*. Ports *SER0* and *SER2* are 4 wire ports (2 data lines and 2 handshake lines). Ports *SER1* and *SER3* are 2 wire ports (data only).

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
SER[0:3]_TX	Output	CMOS 1.8V	Asynchronous serial port data out
SER[0:3]_RX	Input	CMOS 1.8V	Asynchronous serial port data in
SER[0]_RTS#	Output	CMOS 1.8V	Request to Send handshake line for SER0
SER[0]_CTS#	Input	CMOS 1.8V	Clear to Send handshake line for SER0
SER[2]_RTS#	Output	CMOS 1.8V	Request to Send handshake line for SER2
SER[2]_CTS#	Input	CMOS 1.8V	Clear to Send handshake line for SER2

2.1.15. I2C Interface

There is a minimum configuration of I2C ports up to a maximum of 6 ports defined in the SMARC specification: *PM* (Power Management), *LCD* (Liquid Crystal Display), *GP* (General Purpose), *CAMO* (Camera 0), and CAM1 (Camera 1) and *HDMI*. *SMARC-iMX93* supports four of these six *I2Cs* in fast mode (400 KHz operation). All *I2C* interfaces are implemented directly from *NXP i.MX93* processor interfaces.

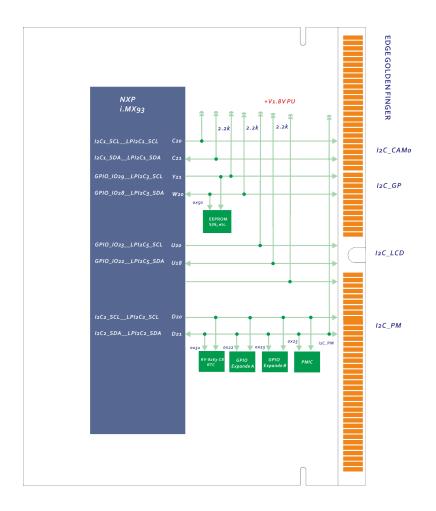


Figure 11 I2C Interface Block Diagram

This will be summarized below.

120	Port	Primary Purpose	Altornativolleo	1/0	Voltage
Golden Finger Connector	i.MX93 CPU	r ninar y r ui pose	Allemative ose	Level	VOIIAEE
I2C_PM	12C2	Power Management support	System configuration management	CMOS 1.8V	
I2C_GP	12C3	General purpose use		CMOS 1.8V	
I2C_LCD	12C5	LCD display support, to read LCD display EDID EEPROMs (for parallel and LVDS LCD,)	General Purpose	CMOS 1.8V	
I2C_CAMO	12C1	Serial camera 0	General Purpose	CMOS 1.8V	

Note:

The 2.2k pull-up resistors for I2C_SCL and I2C_SDA signals are on module.

The *I2C* interface signals that are exposed on the *SMARC* golden finger edge connector as shown below:

	NXP i.MX93 CPU			RC-iMX93 Edge olden Finger	Note
Ball	Mode	Pin Name	Pin#	Net Names	
I2C_P	М				
D20	ALTO	I2C2_SCL LPI2C2_SCL	P121	I2C_PM_CK	Power management I2C bus clock
D21	ALTO	I2C2_SDA LPI2C2_SDA	P122	I2C_PM_DAT	Power management I2C bus data
12C_G	Р				
Y21	ALT11	GPIO_IO29 LPI2C3_SCL	S48	I2C_GP_CK	General purpose I2C bus clock
W20	ALT11	GPIO_IO28 LPI2C3_SDA	S49	I2C_GP_DAT	General purpose I2C bus data
12C_L(CD				
U20	ALT16	GPIO_IO23 LPI2C5_SCL	S139	I2C_LCD_CK	LCD display I2C bus clock
U18	ATL16	GPIO_IO13 LPI2C5_SDA	S140	I2C_LCD_DAT	LCD display I2C bus data
12C_C/	AMO				
C20	ALT0	I2C1_SCL LPI2C1_SCL	S5	I2C_CAM0_CK	Camera 0 I2C bus clock
C21	ALTO	I2C1_SDA LPI2C1_SDA	S7	I2C_CAM0_DAT	Camera 0 I2C bus data

2.1.15.1. I2C GPIO Expander

There are two 24-bit I2C GPIO expanders connecting to I2C_PM bus at address 0x22 and 0x23. Below table shows detail information.

	GPIO Expander A					
Port	Net Names	Description				
GPIO E	Expander A (0x22)					
0	W_DISABLE1#	WiFi Module Power Disable				
1	SD_INT#	Out-of-band SDIO interface interrupt signal.				
2	WL_RESET#	Independent software reset for Wi-Fi				
3	BT_RESET#	Independent software reset for Bluetooth				
4	WL_WAKE_OUT#	Wi-Fi radio wake-up output signal.				
5	BT_WAKE_OUT#	Bluetooth/802.15.4 radio wake-up output signal.				
6	WL_WAKE_IN#	Wi-Fi radio wake-up input signal.				
7	BT_WAKE_IN#	Bluetooth/802.15.4 radio wake-up input signal.				
8	TPM_IRQ#	TPM interrupt signal				
9	TPM_PP	TPM physical presence				
10	SD2_WP	SDIO Write Protect				
11	PMIC_INT#	PMIC interrupt signal				
12	WLAN_PWR_EN	WiFi module power on enable				
13	ENET1_INT#	LAN1 interrupt pin				

	GPIO Expander A					
Port	Net Names	Description				
GPIO E	Expander A (0x22)					
14	ENET2_INT#	LAN2 interrupt pin				
15	Not used					
16	SPI0_CS1#	SPIO Master Chip Select 1 output.				
17	ESPI_CS1# ESPI Master Chip Select 1 output.					
18	USB0_EN	USB0 Power enable Pin				
19	USB0_OC#	USB0 Over-Current Pin				
20	LCD0_VDD_EN	LVDS VDD Power Enable Pin				
21	LCD0_BKLT_EN	LVDS Backlight Enable Pin				
22	LCD1_VDD_EN	MIPI-DSI VDD Power Enable Pin				
23	LCD1_BKLT_EN	MIPI-DSI Backlight Enable Pin				

	GPIO Expander B					
Port	Net Names	Description				
GPIO 8	Expander B (0x23)					
0	GPIO0	GPIOO pin on SMARC Golden Finger Connector (P108)				
1	GPIO1	GPIO1 pin on SMARC Golden Finger Connector (P109)				
2	GPIO2	GPIO2 pin on SMARC Golden Finger Connector (P110)				
3	GPIO3	GPIO3 pin on SMARC Golden Finger Connector (P111)				
4	GPIO4	GPIO4 pin on SMARC Golden Finger Connector (P112)				
5	GPIO6	GPIO6 pin on SMARC Golden Finger Connector (P114)				
6	GPIO7	GPIO7 pin on SMARC Golden Finger Connector (P115)				
7	GPIO8	GPIO8 pin on SMARC Golden Finger Connector (P116)				
8	GPIO9	GPIO9 pin on SMARC Golden Finger Connector (P117)				
9	GPIO10	GPIO10 pin on SMARC Golden Finger Connector (P118)				
10	GPIO11	GPI011 pin on SMARC Golden Finger Connector (P119)				
11	GPIO12	GPI012 pin on SMARC Golden Finger Connector (S142)				
12	GPI013	GPI013 pin on SMARC Golden Finger Connector (S123)				
13	USB0_ID_INT#	USD0 ID Pin				

	GPIO Expander B					
Port	Net Names	Description				
GPIO 8	Expander B (0x23)					
14	Not used					
15	IMX_RESET_OUT	SMARC RESET_OUT#				
16	LID#	Lid open/close indication to Module. (S148)				
17	SLEEP#	Sleep indicator from Carrier board.(S149)				
18	CHARGING#	Held low by Carrier if DC input for battery charger is present. (S151)				
19	BATLOW#	Battery low indication to Module.(S156)				
20	CHARGER_PRSNT#	Held low by Carrier if DC input for battery charger is present.(S152)				
21	BOOT_SELO#	SYSBOOT (P123)				
22	BOOT_SEL1#	SYSBOOT (P124)				
23	BOOT_SEL2#	SYSBOOT (P125)				

Note:

All *I2C* bus defined in SMARC 2.0 specification are operated at 1.8V. The slave devices and their address details are listed in the following table:

#	Device	Description	Address (7-bit)		ress bit)	Notes
				Read	Write	
12C_	.GP					
1	On Semiconductor CAT24C32	EEPROM	0x50	0xA1	0xA0	General purpose parameter EEPROM, Serial number, etc in PICMG EEEP format
12C_	.PM					
1	NXP PCA9451AHN	ΡΜΙϹ	0x25	0x4B	0x4A	Power Management IC
2.	Micro Crystal RV-8263-C8	RTC	0x51	0xA3	0xA2	Real-Time Clock
3	NXP PCAL6524HE	10 Expander A	0x22	0x45	0x44	TPM 2.0
4	NXP PCAL6524HE	10 Expander B	0x23	0x8B	0x8A	I2C IO Expander

Note:

On-module *EEPROM* has been moved from *I2C_PM* to *I2C_GP* at *SMARC 2.0* specification.

2.1.16. CAN Bus Interface

The *FlexCAN* module in *i.MX93* processor is a communication controller implementing the CAN protocol according to the *ISO 11898-1* standard and CAN 2.0 B protocol specifications (*CAN-FD*). The Flexible Controller Area Network (*FlexCAN*) is a serial communications protocol which efficiently supports distributed real-time control with a high level of security. The *SMARC-iMX93* module supports two *CAN-FD* bus interfaces.

CAN-FD interface signals are exposed on the SMARC golden finger edge connector as shown below:

	NXP i.MX93 CPU			1X93 Edge Golden Finger	Note	
Ball	Mode	Pin Name	Pin#	Net Names		
CANO	BUS					
G17	ALT6	PDM_CLK CAN1_TX	P143	CANO_TX	CANO Transmit output	
J17	ALT6	PDM_BIT_STREAM0 CAN1_RX	P144	CANO_RX	CANO Receive input	
CAN1	BUS					
V21	ALT2	GPIO_IO25 CAN2_TX	P145	CAN1_TX	CAN1 Transmit output	
W21	ALT2	GPIO_IO27 CAN2_RX	P146	CAN1_RX	CAN1 Receive input	

A CAN transceiver on carrier is necessary to adapt the signals from *SMARC* golden finger edge connector, which is TTL levels, to the physical layer used. Because the CAN bus system is typically used to connect multiple systems and is often run over very long distances, both power supply and signal path must be electrically isolated to meet a certain isolation level. Users can refer the "*SMARC Carrier Board Hardware Design Guide*" or CAN transceiver application note such as TI SLLA270 for more details.

2.1.16.1. CANO BUS Signals

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
CAN0_TX	Output	CMOS 1.8V	CAN0 Transmit output
CAN0_RX	Input	CMOS 1.8V	CANO Receive input

2.1.16.2. CAN1 BUS Signals

Edge Golden Finder Signal Name	Direction	Type Tolerance	Description
CAN1_TX	Output	CMOS 1.8V	CAN1 Transmit output
CAN1_RX	Input	CMOS 1.8V	CAN1 Receive input

2.1.17. GPIOs

The SMARC-*i*MX93 module supports 12 GPIOs, as defined by the SMARC specification. Specific alternate functions are assigned to some *GPIOs* such as *PWM* / *Tachometer* capability, Camera support, and HD Audio reset. All pins are capable of bi-directional operation. A default direction of operation is assigned, with half of them (*GPIOO* – *GPIO5*) for use as outputs and the remainder (*GPIO6* – *GPIO11*) as inputs by SMARC hardware specification.

GPIO signals are exposed on the *SMARC* golden finger edge connector as shown below:

NXP i.MX93 CPU			RC-iMX93 Edge Ne folden Finger	t Names	Note	
Ball	Mode	Pin Name	Pin#	Pin Name		
GPIOs						
Port 0	of i2c GF	PIO expander B	P108	GPIOO/CAMO_PWR#	GPIOO	Camera O Power Enable, active low output
Port 1	of i2c GP	10 expander B	P109	GPI01/CAM1_PWR#	GPI01	Camera 1 Power Enable, active low output
Port 2	of i2c GP	910 expander B	P110	GPIO2 /CAMO_RST#	GPIO2	Camera 0 Reset, active low output
Port 3	of i2c GP	210 expander B	P111	GPIO3/CAM1_RST#	GPIO3	Camera 1 Reset, active low output
Port 4	of i2c GF	PIO expander B	P112	GPIO4/HDA_RST#	GPIO4	HD Audio Reset, active low output
G18	ALT5 ALT3	PDM_BIT_STREAM1 GPI001_I010/ TPM2_EXTCLK	P113	GPIO5/PWM_OUT	GPIO5	PWM output
Port 5	of i2c GF	910 expander B	P114	GPIO6/TACHIN	GPIO6	Tachometer input (used with the GPI05 PWM)
Port 6	of i2c GF	210 expander B	P115	GPIO7	GPIO7	
Port 7	of i2c GF	10 expander B	P116	GPI08	GPI08	
Port 8	of i2c GP	PIO expander B	P117	GPIO9	GPIO9	
Port 9	of i2c GF	210 expander B	P118	GPI010	GPI010	
Port 10) of i2c G	PIO expander B	P118	GPI011	GPIO11	

2.1.17.1. GPIO Signals

Twelve Module pins are allocated for *GPIO* (general purpose input / output) use. All pins are capable of bi-directional operation. By *SMARC* specification, *GPIOO* – *GPIO5* are recommended for use as outputs and the remainder (*GPIO6* – *GPIO11*) as inputs.

At Module power-up, the state of the GPIO pins may not be defined, and may briefly be configured in the "wrong" state, before boot loader code corrects them. Carrier designers should be aware of this and plan accordingly. All GPIO pins are capable of generating interrupts. The interrupt characteristics (edge or level sensitivity, polarity) are generally configurable in the *i.MX93* register set.

Edge Golden Finder Signal Name	Preferr ed Directio n	<i>Type Tolerance</i>	Description
GPIO0/CAM0_PWR#	Output	CMOS 1.8V	Camera 0 Power Enable, active low output
GPI01/CAM1_PWR#	Output	CMOS 1.8V	Camera 1 Power Enable, active low output
GPIO2/CAM0_RST#	Output	CMOS 1.8V	Camera 0 Reset, active low output
GPIO3/CAM1_RST#	Output	CMOS 1.8V	Camera 1 Reset, active low output
GPIO4/HDA_RST#	Output	CMOS 1.8V	HD Audio Reset, active low output
GPI05/PWM_OUT	Output	CMOS 1.8V	PWM output
GPIO6/TACHIN	Input	CMOS 1.8V	Tachometer input (used with the GPI05 PWM)
GPI07/PCAM_FLD	Input	CMOS 1.8V	
GPI08/CAN0_ERR#	Input	CMOS 1.8V	
GPIO9/CAN1_ERR#	Input	CMOS 1.8V	
GPIO10	Input	CMOS 1.8V	
GPI011	Input	CMOS 1.8V	

2.1.18 Watchdog Timer Interface

i.MX93 features an internal *WDT*. Embedian's Linux kernel enables the internal *i.MX93 WDT* and makes this functionality available to users through the standard Linux Watchdog API.

A description of the API is available following the link below: http://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt

WDT signals are exposed on the SMARC golden finger edge connector as shown below:

	NXP i.MX93 CPU		SMARC-iMX93 Edge Golden Finger		Net Names	Note
Ball	Mode	Pin Name	Pin#	Pin Name		
Watc	hdog Tim	er				
Y3	ALT5	CCM_CLKO2 GPIO3_IO27	S145	WDT_TIME_ OUT#	WDT_TIME_OUT #	Watchdog- Timer Output

2.1.19 Boot ID EEPROM

The SMARC-*i*MX93 module includes an I2C serial *EEPROM* available on the $I2C_GP$ bus. An On Semiconductor 24C32 or equivalent *EEPROM* is used in the module. The device operates at 1.8V. The Module serial *EEPROM* is placed at I2C slave addresses A2 A1 A0 set to 0 (I2C slave address 50 hex, 7 bit address format or A0 / A1 hex, 8 bit format) (for I2C *EEPROMs*, address bits A6 A5 A4 A3 are set to binary 0101 convention).

The module serial *EEPROM* is intended to retain module parameter information, including serial number. The module serial *EEPROM* data structure conforms to the *PICMG® EEEP* Embedded *EEPROM* Specification.

Note:

The *EEPROM ID* memory layout is now follow the mainline and as follows.

Name	Size (Bytes)	Contents
Header	4	MSB 0×EE3355AA LSB
<i>Board Name</i>	8	Name for Board in ASCII "SMC93D1G" = Dual Core Cortex-A55 and 1GB LPDDR4 Configuration operating at Commercial Temp. "SMC93I1G" = Dual Core Cortex-A55 and 1GB LPDDR4 Configuration operating at Industrial Temp. "SMC93D2G" = Dual Core Cortex-A55 and 2GB LPDDR4 Configuration operating at Commercial Temp. "SMC93I2G" = Dual Core Cortex-A55 and 2GB LPDDR4 Configuration in Industrial Temp. "SMC93D1W" = Dual Core Cortex-A55 and 1GB LPDDR4 Configuration operating at Commercial Temp. with WiFi/BT "SMC93D2W" = Dual Core Cortex-A55 and 2GB LPDDR4 Configuration operating at Commercial Temp. with WiFi/BT "SMC93D2W" = Dual Core Cortex-A55 and 2GB LPDDR4 Configuration operating at Commercial Temp.with WiFi/BT "SMC93I1W" = Dual Core Cortex-A55 and 1GB LPDDR4 Configuration operating at Industrial Temp.with WiFi/BT "SMC93I2W" = Dual Core Cortex-A55 and 2GB LPDDR4 Configuration operating at Industrial Temp.with WiFi/BT
Version	4	Hardware version code for version in ASCII "00A0" = rev. A0
Serial Number	12	Serial number of the board. This is a 12 character string which is: WWYY3010nnnn Where: WW = 2 digit week of the year of production YY = 2 digit year of production 3 = Module iMX93 010/01W/I10/I1W= Commercial 1G/Commercial 1G with WiFi/Industrial 1G/Industrial 1G with WiFi or 020//02W/I20/I2W= Commercial 2G/Commercial 2G with WiFi/Industrial 2G/Industrial 2G with WiFi nnnn = incrementing board number

Name	Size (Bytes)	Contents
Configuration Option	32	Codes to show the configuration setup on this board. These 32 bytes are reserved by default.
MAC Address	6	Ethernet MAC Address (10:0D:32:XX:XX:XX)
MAC Address	6	Ethernet MAC Address for 2nd LAN (10:0D:32:XX:XX:XX)
Available	32720	Available space for other non-volatile codes/data

2.2 SMARC-iMX93 Debug

2.2.1. Serial Port Debug

SMARC module has 4 serial output ports, SER0, SER1, SER2 and SER3. Out of these 4 serial ports, SER3 is set as the serial debug port use for *i.MX93* from Embedian. Users can change to any port they want to from *u-boot defconfig* file. SER3 is exposed (along with all other serial ports available on the module) in the SMARC-*iMX93* Evaluation Carrier. The default baud rate setting is 115,200 8N1. SER3 pin out of the SMARC-*iMX93* is shown below:

l mode			RC-iMX93 Edge olden Finger Pin Name	Net Names	Notes	
SER3 (Debugging Port)					
ALTO	UART1_TXD LPUART1_TX	P140	SER3_TX	SER3_TX	Asynchronous serial port data out	
ALTO	UART1_RXD LPUART1_RX	P141	SER3_RX	SER3_RX	Asynchronous serial port data in	

2.3 Mechanical Specifications

2.3.1. Module Dimensions

The SMARC-*i*MX93 complies with SMARC Hardware Specification in an 82mm x 50 mm form factor.

2.3.2. Height on Top

1.3mm maximum (without PCB) complied with SMARC specification defines as 3mm as the maximum.

2.3.3. Height on Bottom

0.9mm maximum (without PCB) complied with SMARC specification defines as 1.3mm as the maximum.

2.3.4. Mechanical Drawings

The mechanical information is shown in Figure 12: SMARC-*i*MX93 Mechanical Drawings (Top View) and Figure 13: SMARC-*i*MX93 Mechanical Drawings (Bottom View))

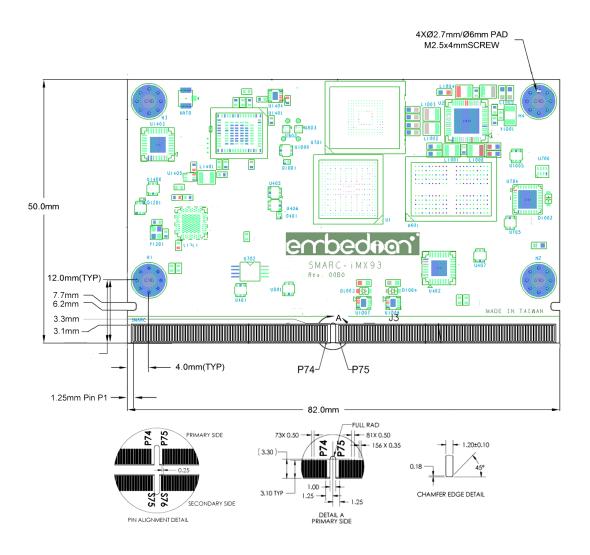
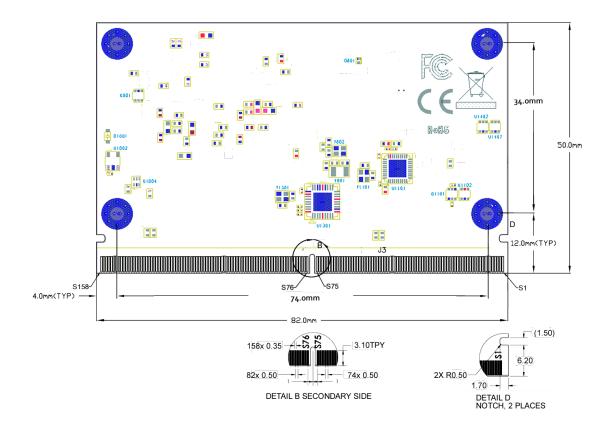



Figure 12 SMARC-iMX93 Mechanical Drawings (Top View)

Figure 13 SMARC-iMX93 Mechanical Drawings (Bottom View)

The figure on the following page details the 82mm x 50mm Module mechanical attributes, including the pin numbering and edge finger pattern.

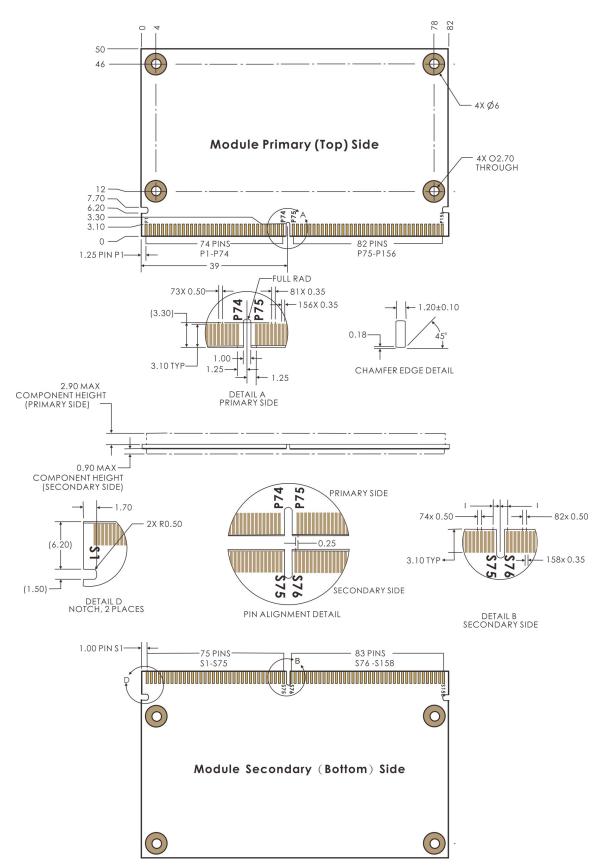


Figure 14 SMARC-iMX93 Module Mechanical Outline

Top side major component (IC and Connector) information is shown in Figure 15: *SMARC-iMX93* Top side components.

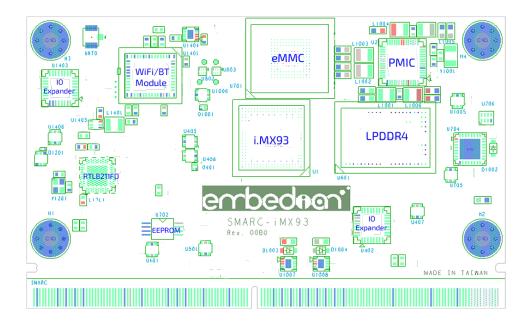


Figure 15 SMARC-iMX93 Top Side Components

Bottom side major component (IC and Connector) information is shown in Figure 16: *SMARC-iMX93* Bottom side components.

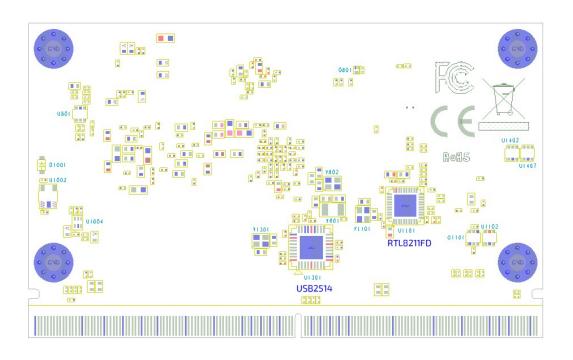
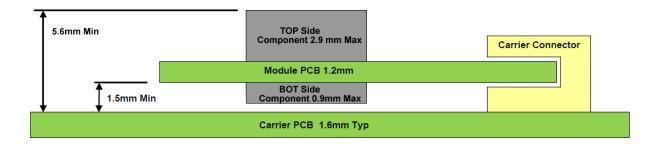
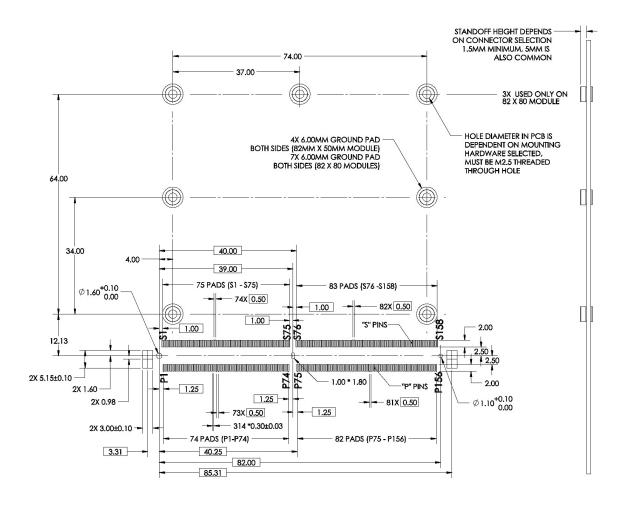



Figure 16 SMARC-iMX93 Bottom Side Components

SMARC-*i*MX93 height information from Carrier board Top side to tallest Module component is shown in Figure 17: SMARC-*i*MX93 Minimum "Z" Height:


Figure 17 SMARC-iMX93 Minimum "Z" Height

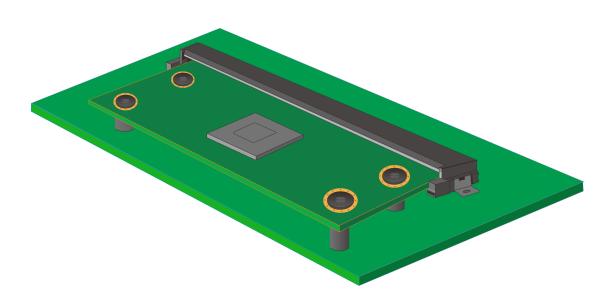
The *SMARC* connector board-to-board stack heights that are available may result in the use of non-standard spacer lengths. The board-to-board stack heights available include 1.5mm, 2.7mm and 5mm. Of these three, only the spacer for the 5mm stack would likely be a standard length.

When a 1.5mm stack height Carrier board connector is used, there shall not be components on the Carrier board Top side in the Module region. Additionally, when 1.5mm stack height connectors are used, there should not be PCB traces on the Carrier top side in the Module shadow. This is to prevent possible problems with metallic Module heat sink attachment hardware that may protrude through the Module.

If Carrier board components are required in this region, then the Carrier components must be on the Carrier Bottom side, or a taller Module-to-Carrier connector may be used. Stack heights of 2.7mm, 3mm, 5mm and up are available.

2.3.5. Carrier Board Connector PCB Footprint

Figure 18 Carrier Board Connector PCB Footprint


Note:

The hole diameter for the 4 holes (82mm x 50mm Module) or 7 holes (82mm x 80mm Module) depends on the spacer hardware selection. See the section below for more information on this.

2.3.6. Module Assembly Hardware

The *SMARC-iMX93* module is attached to the carrier with four M2.5 screws. A 4mm length screw is usually used. The attachment holes are located on the corners of the module. Attachment holes have a 6mm diameter pad, 2.7 mm dia drill hole as shown Figure 12: *SMARC-iMX93* Mechanical Drawings (Top View)

2.3.7. Carrier Board Standoffs

Figure 19 Screw Fixation

Standoffs secured to the Carrier board are expected. The standoffs are to be used with M2.5 hardware. Most implementations will use Carrier board standoffs that have M2.5 threads (as opposed to clearance holes). A short M2.5 screw and washer, inserted from the Module top side, secures the Module to the Carrier board threaded standoff.

The *SMARC* connector board-to-board stack heights that are available may result in the use of non-standard spacer lengths. The board-to-board stack heights available include 1.5mm, 2.7mm and 5mm. Of these three, only the spacer

for the 5mm stack would likely be a standard length.

Penn Engineering and Manufacturing (PEM) (www.pemnet.com) makes surface mount spacers with M2.5 internal threads. The product line is called SMTSO ("surface mount technology stand offs"). The shortest standard length offered is 2mm. A custom part with 1.5mm standoff length, M2.5 internal thread, and 5.56mm standoff OD is available from PEM. The Carrier PCB requires a 4.22mm hole and 6.2mm pad to accept these parts.

Other vendors such as RAF Electronic Hardware (<u>www.rafhdwe.com</u>) offer M2.5 compatible swaged standoffs. Swaged standoffs require the use of a press and anvil at the CM. Their use is common in the industry. The standoff OD and Carrier PCB hole size requirements are different from the PEM SMTSO standoffs described above.

2.3.8. Carrier Connector

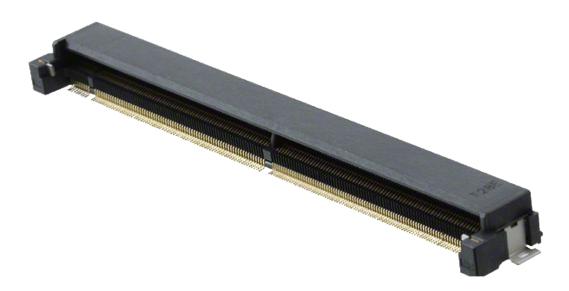


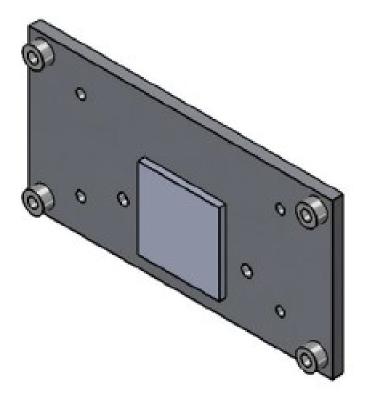
Figure 20 MXM3 Carrier Connector

The Carrier board connector is a 314 pin 0.5mm pitch right angle part designed for use with 1.2mm thick mating PCBs with the appropriate edge finger pattern. The connector is commonly used for MXM3 graphics cards. The *SMARC* Module uses the connector in a way quite different from the *MXM3* usage.

Vender	Vendor P/N	Stack Height	Body Height	Contact Plating	Pin Style	Body Color
Foxconn	AS0B821-S43B - *H	1.5mm	4.3mm	Flash	Std	Black
Foxconn	AS0B821-S43N - *H	1.5mm	4.3mm	Flash	Std	lvory
Foxconn	AS0B826-S43B - *H	1.5mm	4.3mm	10 u-in	Std	Black
Foxconn	AS0B826-S43N - *H	1.5mm	4.3mm	10 u-in	Std	lvory
Lotes	AAA-MXM-008-P04_ A	1.5mm	4.3mm	Flash	Std	Tan
Lotes	AAA-MXM-008-P03	1.5mm	4.3mm	15 u-in	Std	Tan
Speedtech	В35Р101-02111-Н	1.56mm	4.0m m	Flash	Std	Black
Speedtech	B35P101-02011-H	1.56mm	4.0m m	Flash	Std	Tan
Speedtech	В35Р101-02112-Н	1.56mm	4.0m m	10 u-in	Std	Black
Speedtech	В35Р101-02012-Н	1.56mm	4.0m m	10 u-in	Std	Tan
Speedtech	В35Р101-02113-Н	1.56mm	4.0m m	15 u-in	Std	Black
Speedtech	B35P101-02013-H	1.56mm	4.0m m	15 u-in	Std	Tan
Aces	91781-314 2 8-001	2.7mm	5.2mm	3 u-in	Std	Black

Vender	Vendor P/N	Stack Height	Body Height	Contact Plating	Pin Style	Body Color
Foxconn	AS0B821-S55B - *H	2.7mm	5.5mm	Flash	Std	Black
Foxconn	AS0B821-S55N - *H	2.7mm	5.5mm	Flash	Std	lvory
Foxconn	AS0B826-S55B - *H	2.7mm	5.5mm	10 u-in	Std	Black
Foxconn	AS0B826-S55N - *H	2.7mm	5.5mm	10 u-in	Std	lvory
Speedtech	B35P101-02121-H	2.76mm	5.2mm	Flash	Std	Black
Speedtech	B35P101-02021-H	2.76mm	5.2mm	Flash	Std	Tan
Speedtech	B35P101-02122-H	2.76mm	5.2mm	10 u-in	Std	Black
Speedtech	В35Р101-02022-Н	2.76mm	5.2mm	10 u-in	Std	Tan
Speedtech	B35P101-02123-H	2.76mm	5.2mm	15 u-in	Std	Black
Speedtech	В35Р101-02023-Н	2.76mm	5.2mm	15 u-in	Std	Tan
Foxconn	AS0B821-S78B - *H	5.0mm	7.8	Flash	Std	Black
Foxconn	AS0B821-S78N - *H	5.0mm	7.8	Flash	Std	lvory
Foxconn	AS0B826-S78B - *H	5.0mm	7.8	10 u-in	Std	Black
Foxconn	AS0B826-S78N - *H	5.0mm	7.8	10 u-in	Std	lvory
Yamaichi ⁽¹⁾	CN113-314-2001	5.0mm	7.8	0.3 u-meter	Std	Black

Other, taller stack heights may be available from these and other vendors. Stack heights as tall as 11mm are shown on the Aces web site.

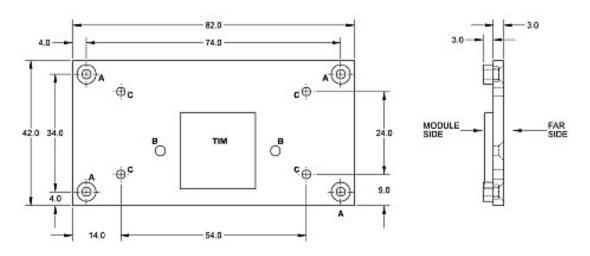

Note:

- 1. Yamaichi CN113-314-2001 is automotive grade.
- 2. The vendor drawings for the connectors listed above show a PCB footprint pattern for use with an MXM3 graphics card. This footprint, and the associated pin numbering, is not suitable for *SMARC* use. The MXM3 standard gangs large groups of pins together to provide ~80W capable power paths needed for X86 graphics cards. The *SMARC* module "ungangs" these pins to allow more signal pins. Footprint and pin numbering information for application of this 314 pin connector to *SMARC* is given in the sections below.

2.3.9. Module Cooling Solution—Heat Spreader

A standard heat-spreader plate for use with the SMARC 82mm x 50mm form factor is described below. A standard heat spreader plate definition allows the customer to use a Module from multiple vendors.

The heat spreader plate is sized at 82mm x 42mm x 3mm, and sits 3mm above the *SMARC* Module. The heat spreader plate 'Y' dimension is deliberately set at 42mm and not 50mm, to allow the plate to clear the *SMARC MXM3* connector. The plate is shown in the figures below.


Figure 21 Heat Spreader

The internal square in the figure above is a thermally conductive and mechanically compliant Thermal Interface Material (or "TIM"). The exact X-Y position and Z thickness details of the TIM vary from design to design.

The two holes immediately adjacent to the TIM serve to secure the PCB in the SOC area and compress the TIM.

The four interior holes that are further from the center allow a heat sink to be attached to the heat spreader plate, or they can be used to secure the heat spreader plate to a chassis wall that serves as a heat sink.

Dimensions and further details may be found in the following figure.

Dimensions in the figure above are in millimeters. "TIM" stands for "Thermal Interface Material". The TIM takes up the small gap between the SOC top and the Module - facing side of the heat spreader.

Hole Reference	Description	Size
A	SMARC Module corner mounting holes Spacing determined by SMARC specification for 82mm x 50mm Modules. Typically these holes have 3mm length press fit or swaged clearance standoffs on the Module side. These holes are typically countersunk on the far side of the plate, to allow the heat spreader plate to be flush with a secondary heat sink.	Hole size depends on standoffs used. Standoff diameter must be compatible with SMARC Module mounting hole pad and hole size (6.0mm pads, 2.7mm holes on the Module). The holes and standoffs are for use with M2.5 screw hardware. The far side of these holes are counter-sunk to allow the attachment screw to be flush with the far side heat spreader surface.
В	Not Defined	
C	Fixed location holes to allow the attachment of a heat sink to the heat spreader, or to allow the heat spreader to be secured to a chassis wall that can serve as a heat sink.	M3 threaded holes

2.4 Electrical Specifications

2.4.1. Supply Voltage

The SMARC-*i*MX93 module operates over an input voltage range of 3.0V to 5.25V. Power is provided from the carrier through 10 power pins as defined by the SMARC specification.

Caution! A single 5V or 3.3V DC input is recommended.

2.4.2. RTC/Backup Voltage

3.0V RTC backup power is provided through the VDD_RTC pin from the carrier board. This connection provides back up power to the module PMIC. The RTC is powered via the primary system 3.3V supply during normal operation and via the VBAT power input, if it is present, during power-off.

2.4.3. No Separate Standby Voltage

The SMARC-*i*MX93 does not have a standby power rail. Standby operation is powered through the main supply voltage rail, as defined in the SMARC specification.

2.4.4. Module I/O Voltage

The SMARC-*i*MX93 module supports 1.8V (SMARC v2.0 compliant) level I/O voltage depending on the part number that users selected.

2.4.5. MTBF

The SMARC-iMX93 System MTBF (hours) : >100,000 hours

The above *MTBF* (Mean Time Between Failure) values were calculated using a combination of manufacturer's test data, if the data was available, and a Bellcore calculation for the remaining parts. The Bellcore calculation used is "Method 1 Case 1". In that particular method the components are assumed to be operating at a 50 % stress level in a 40° C ambient environment and the system is assumed to have not been burned in. Manufacturer's data has been used wherever possible. The manufacturer's data, when used, is specified at 50°C, so in that sense the following results are slightly conservative. The MTBF values shown below are for a 40°C in an office or telecommunications environment. Higher temperatures and other environmental stresses (extreme altitude, vibration, salt water exposure, etc.) lower MTBF values.

2.4.6. Power Consumption

The power consumption values listed in this document were measured under a controlled environment. The hardware used for testing includes an *SMARC-iMX93* module, carrier board is *EVK-STD-CARRIER-S20* with 7-*inch* LVDS display, SD card and USB keyboard. The carrier board was powered externally by a power supply unit so that it does not influence the power consumption value that is measured for the module. The USB keyboard was detached once the module was configured within the OS. All recorded values were averaged over a 30 second time period. The modules were cooled by the heatspreader specific to the module variants.

Each module was measured while running Yocto Sumo. To measure the worst case power consumption, the cooling solution was removed and the CPU core temperature was allowed to run between 95° and 100°C at 100% workload. The peak current value was then recorded. This value should be taken into consideration when designing the system's power supply to ensure that the power supply is sufficient during worst case scenarios.

Power consumption values were recorded during the following stages: Yocto Mickledore

- Desktop Idle
- 100% CPU workload

Note: With the linux stress tool, we stressed the CPU to maximum frequency. The table below provides additional information about the different variants offered by the *SMARC-iMX93*.

SMARC Part Number	Desktop Idle	100% workload
SMARC-iMX93-2G-I	TBD	2.1W

2.5 Environmental Specifications

2.5.1. Operating Temperature

The SMARC-*i*MX93 module operates from -40°C to 85°C air temperature, with a passive heat sink arrangement.

2.5.2. Humidity

Operating: 10% to 90% RH (non-condensing). Non-operating: 5% to 95% RH (non-condensing).

2.5.3. ROHS/REACH Compliance

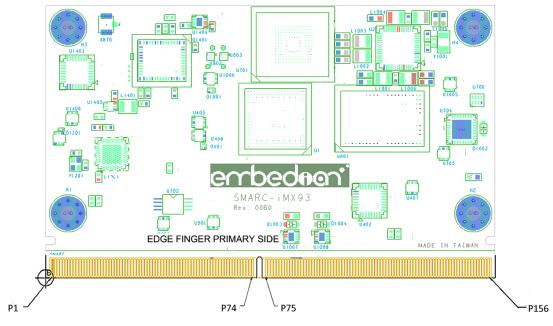
The SMARC-*i*MX93 module is compliant to the 2002/95/EC RoHS directive and REACH directive.

Chapter 3

Connector PinOut

This Chapter gives detail pinout of SMARC-*i*MX93 golden finger edge connector.

Section include :


• SMARC-iMX93 Connector Pin Mapping

Chapter 3 Connector Pinout

The Module pins are designated as P1 - P156 on the Module Primary (Top) side, and S1 - S158 on the Module Secondary (Bottom) side. There are total of 314 pins on the Module. The connector is sometimes identified as a 321 pin connector, but 7 pins are lost to the key (4 on the primary side and 3 on secondary side).

The Secondary (Bottom) side faces the Carrier board when a normal or standard Carrier connector is used.

The SMARC-*i*MX93 module pins are deliberately numbered as *P*1 – *P*156 and *S*1 – *S*158 for clarity and to differentiate the SMARC Module from MXM3 graphics modules, which use the same connector but use the pins for very different functions. MXM3 cards and MXM3 baseboard connectors use different pin numbering scheme.

3.1 SMARC-iMX93 Connector Pin Mapping

Figure 22 SMARC-iMX93 edge finger primary pins

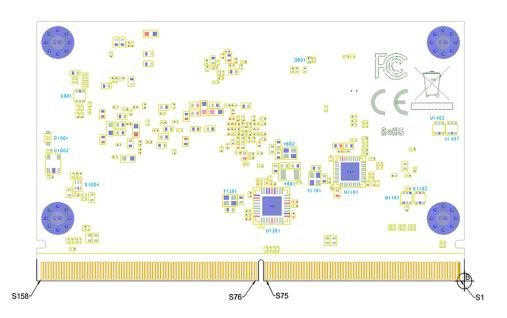


Figure 23 SMARC-iMX93 edge finger secondary pins

The next tables describe each pin, its properties, and its use on the module and development board.

The "SMARC Edge Finger" column shows the connection of the signals defined in the SMARC specification. The "NXP i.MX93 CPU" column shows the connection of the CPU signals on the module. The format of this column is "Ball/Mode/Signal Name" where "Signal Name" is the chip where the signals are connected, and "Ball" is the name of the pad where the signals are connected as they are defined in the i.MX93 processor datasheet.

Pinout Legend

1	Input
0	Output
I/O	Input or output
Ρ	Power
AI	Analogue input
<i>A0</i>	Analogue output
AIO	Analogue Input or analogue output
OD	Open Drain Signal
#	Low level active signal

SMARU	C Edge Finger	NXP i.	MX93 CF	PU	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P1	SMB_ALERT_1V 8#					Not used
P2	GND				Р	Ground
P3	CSI1_CK+					Not used
P4	CSI1_CK-					Not used
P5	GBE1_SDP					Not used
P6	GBE0_SDP					Not used
P7	CSI1_RX0+					Not used
P8	CSI1_RX0-					Not used
P9	GND				Р	Ground
P10	CSI1_RX1+					Not used
P11	CSI1_RX1-					Not used
P12	GND				Р	Ground
P13	CSI1_RX2+					Not used
P14	CSI1_RX2-					Not used
P15	GND				Р	Ground

SMARC	CEdge Finger	NXP i.	MX93 CP	IJ	Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P16	CSI1_RX3+					Not used
P17	CSI1_RX3-					Not used
P18	GND				Р	Ground
P19	GbE0_MDI3-				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Negative Channel 3
P20	GbE0_MDI3+				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Positive Channel 3
P21	GbE0_LINK100#				0 0D	Link Speed Indication LED for 100Mbps Could be able to sink 24mA or more Carrier LED current
P22	GbE0_LINK1000#				O OD	Link Speed Indication LED for 1000Mbps Could be able to sink 24mA or more Carrier LED current
P23	GbE0_MDI2-				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Negative Channel 2
P24	GbE0_MDI2+				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Positive Channel 2

SMARC	Edge Finger	NXP i	MX93 CPU	J	Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P25	GbE0_LINK_ACT#				O OD	Link / Activity Indication LED Driven low on Link (10, 100 or 1000 mbps) Blinks on Activity Could be able to sink 24mA or more Carrier LED current
P26	GbE0_MDI1-				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Negative Channel 1
P27	GbE0_MDI1+				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Positive Channel 1
P28	GbE0_CTREF					Not used
P29	GbE0_MDI0-				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Negative Channel 0
P30	GbE0_MDI0+				AIO	Realtek RTL8211FD-CG: Differential Transmit/Receive Positive Channel 0

SMAR	C Edge Finger	NXP i.i	МХ93 СР	U	Тур e	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P31	SPI0_CS1#	Port 16	5 of i2c GF	PIO expander A	0	SPIO Master Chip Select 1 output.
P32	GND				Р	Ground
P33	SDIO_WP	Port 10) of i2c GF	PlO expander A	I	Write Protect
P34	SDIO_CMD	Y19	ALT0	SD2_CMD USDHC2_CMD	10	Command Line
P35	SDIO_CD#	Y17	ALT5	SD2_CD_B GPIO3_I000	I	Card Detect
P36	SDIO_CK	AA19	ALTO	SD2_CLK USDHC2_CLK	0	Clock
P37	SDIO_PWR_EN	AA17	ALT5	SD2_RESET_B GPIO2_IO19	0	SD card power enable
P38	GND				Р	Ground
P39	SDIO_DO	Y18	ALT0	SD2_DATA0 USDHC2_DATA0	10	Data path
P40	SDIO_D1	AA18	ALTO	SD2_DATA1 USDHC2_DATA1	10	Data path
P41	SDIO_D2	Y20	ALTO	SD2_DATA2 USDHC2_DATA2	10	Data path
P42	SDIO_D3	AA20	ALTO	SD2_DATA3 USDHC2_DATA3	10	Data path

SMARC	CEdge Finger	NXP i.	NXP i.MX93 CPU			Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P43	SPIO_CSO#	M20	ALTO	GPIO_IO08 GPIO2_IO08	0	SPIO Master Chip Select 0 output,
P44	SPIO_CK	N18	ALT1	GPIO_IO11 LPSPI3_SCK	0	SPI0 Master Clock output
P45	SPIO_DIN	M21	ALT1	GPIO_IOO9 LPSPI3_SIN	I	SPIO Master Data input (input to CPU, output from SPI device)
P46	SPIO_DO	N17	ALT1	GPIO_IO10 LPSPI3_SOUT	0	SPIO Master Data output (output from CPU, input to SPI device)
P47	GND				Р	Ground
P48	SATA_TX+					Not used
P49	SATA_TX-					Not used
P50	GND				Р	Ground
P51	SATA_RX+					Not used
P52	SATA_RX-					Not used
P53	GND				Ρ	Ground

SMARC	Edge Finger	NXP i.	MX93 CPU		Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P54	ESPI_CSO#/ SPI1_CSO#	J21	ALTO	GPIO_1000 GPIO2_1000	0	SPI1 Master Chip Select 0 output
P55	ESPI_CS1#/ SPI1_CS1#	Port 1	7 of i2c GPIC) expander A	0	SPI1 Master Chip Select 1 output
P56	ESPI_CK/ SPI1_CK	K21	ALT4	GPIO_IOO3 LPSPI6_SCK	0	SPI1 Master Clock output
P57	ESPI_IO_1/ SPI1_DIN	J20	ALT4	GPIO_IOO1 LPSPI6_SIN	I	SPI1 Master Data input (input to CPU, output from SPI device)
P58	ESPI_IO_0/ SPI1_DO	К20	ALT4	GPIO_IOO2 LPSPI6_SOUT	0	SPI1 Master Data output (output from CPU, input to SPI device)
P59	GND				Р	Ground
P60	USB0+	B14		USB1_D_P	AIO	Differential USB0 data
P61	USBO-	A14		USB1_D_N	AIO	Differential USB0 data
P62	USBO_EN_OC#	and Port 1	8 (USB_EN) 9 (USB_OC# 10 expande	ŧ)	IO OD	Pulled low by Module OD driver to disable USBO power. Pulled low by Carrier OD driver to indicate over-current situation If this signal is used, a pull-up is required on the Carrier

SMAR	RC Edge Finger	NXP i.	MX93 CP	U	Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P63	USB0_VBUS_DET	F12		USB_OTG_VBUS	5 1	USB host power detection, when this port is used as a device
P64	USB0_OTG_ID	C11		USB1_ID	I	USB OTG ID input, active high
P65	USB1+				10	Differential USB1 data pair (from USB2514 port 3)
P66	USB1-				10	Differential USB1 data pair (from USB2514 port 3)
P67	USB1_EN_OC#	From US	582514		IO OD	Pulled low by Module OD driver to disable USB0 power Pulled low by Carrier OD driver to indicate over-current situation If this signal is used, a pull-up is required on the Carrier
P68	GND				Р	Ground
P69	USB2+				10	Differential USB2 data pair (from USB2514 port2)
P70	USB2-				10	Differential USB2 data pair (from USB2514 port2)

SMARU	Edge Finger	NXP i.MX93 CP	V	Type D	escription
Pin#	Pin Name	Ball Mode	Signal Name		
P71	USB2_EN_OC#	From USB2514		IO OD	Pulled low by Module OD driver to disable USB0 power Pulled low by Carrier OD driver to indicate over-current situation If this signal is used, a pull-up is required on the Carrier
P72	RSVD				Not used
P73	RSVD				Not used
P74	USB3_EN_OC#	From USB2514		10 0D	Pulled low by Module OD driver to disable USB0 power Pulled low by Carrier OD driver to indicate over-current situation If this signal is used, a pull-up is required on the Carrier

SMAR	RC Edge Finger	NXP i.MX93 CPU	Туре	Description
Pin#	Pin Name	Ball Mode Signal Name		
P75	PCIE_A_RST#			Not used
P76	USB4_EN_OC#	From USB2514		Pulled low by Module OD driver to disable USB0 power Pulled low by Carrier OD driver to indicate over-current situation If this signal is used, a pull-up is required on the Carrier
P77	PCIE_B_CKREQ #			Not used
P78	PCIE_A_CKREQ #			
P79	GND		Р	Ground
P80	PCIE_C_REFCK+			Not used
P81	PCIE_C_REFCK-			Not used
P82	GND		Р	Ground

SMARC	C Edge Finger	NXP i.	NXP i.MX93 CPU			Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P83	PCIE_A_REFCK+					Not used
P84	PCIE_A_REFCK-					Not used
P85	GND				Р	
P86	PCIE_A_RX+					Not used
P87	PCIE_A_RX-					Not used
P88	GND				Р	Ground
P89	PCIE_A_TX+					Not used
P90	PCIE_A_TX-					Not used
P91	GND				Р	Ground

SMAR	SMARC Edge Finger		NXP i.MX93 CPU			Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P92	HDMI_D2+ / DP1_LANE0+					Not used
P93	HDMI_D2- / DP1_LANE0-					Not used
P94	GND				Р	Ground
P95	HDMI_D1+/ DP1_LANE1+					Not used
P96	HDMI_D1-/ DP1_LANE1-					Not used
P97	GND				Р	Ground

SMARC	CEdge Finger	NXP i.M	NXP i.MX93 CPU			Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P98	HDMI_D0+/ DP1_LANE2+					Not used
P99	HDMI_D0-/ DP1_LANE2-					Not used
P100	GND				Р	Ground
P101	HDMI_CK+/ DP1_LANE3+					Not used
P102	HDMI_CK-/ DP1_LANE3-					Not used
P103	GND				Р	Ground
P104	HDMI_HPD/ DP1_HDP					Not used
P105	HDMI_CTRL_CK / DP1_AUX+					Not used
P106	HDMI_CTRL_DA T/ DP1_AUX-					Not used
P107	DP1_AUX_SEL					Not used

SMARC	Edge Finger	NXP i.MX93 CPU	Туре	Description
Pin#	Pin Name	Ball Mode Signal Name		
P108	GPIOO / CAMO_PWR#	Port 0 of i2c GPIO expander B	10	Camera 0 Power Enable, active low output
P109	GPIO1 / CAM1_PWR#	Port 1 of i2c GPIO expander B	10	Camera 1 Power Enable, active low output
P110	GPIO2 / CAM0_RST#	Port 2 of i2c GPIO expander B	10	Camera 0 Reset, active low output
P111	GPIO3 / CAM1_RST#	Port 3 of i2c GPIO expander B	10	Camera 1 Reset, active low output
P112	GPIO4 / HDA_RST#	Port 4 of i2c GPIO expander B	10	HD Audio Reset, active low output
P113	GPIO5 / PWM_OUT	G18 ALT5 PDM_BIT_STREA ALT3 M1GPIO01_I010 /TPM2_EXTCLK	10	PWM output
P114	GPIO6 / TACHIN	Port 5 of i2c GPIO expander	10	Tachometer input (used with the GPIO5 PWM)
P115	GPI07	Port 6 of i2c GPIO expander	10	
P116	GPIO8	Port 7 of i2c GPIO expander	10	
P117	GPIO9	Port 8 of i2c GPIO expander	10	
P118	GPIO10	Port 9 of i2c GPIO expander	10	
P119	GPIO11	Port 10 of i2c GPIO expander	10	
P120	GND		Р	Ground

SMAR	Edge Finger	NXP i.	MX93 CP	U	Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P121	I2C_PM_CK	D20	ALTO	I2C2_SCL LPI2C2_SCL	IO OD	Power management I2C bus clock
P122	I2C_PM_DAT	D21	ALTO	I2C2_SDA LPI2C2_SDA	IO OD	Power management I2C bus data
P123	BOOT_SELO#	B4	ALTO	GPI01_I005 GPI01_I005	I	SYSBOOT and Line De-multiplexer Logic Pulled up on Module. Driven by OD part on Carrier.
P124	BOOT_SEL1#	A3	ALTO	GPI01_I006 GPI01_I006	I	SYSBOOT and Line De-multiplexer Logic Pulled up on Module. Driven by OD part on Carrier.
P125	BOOT_SEL2#	F6	ALTO	GPI01_I007 GPI01_I007	I	SYSBOOT and Line De-multiplexer Logic Pulled up on Module. Driven by OD part on Carrier.
P126	RESET_OUT#				0	General purpose reset output to Carrier board.

SMARC	Edge Finger	NXP i.	MX93 CI	PU	Тур e	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P127	RESET_IN#				I	Reset input from Carrier board. Carrier drives low to force a Module reset, floats the line otherwise Pulled up on Module. Driven by OD part on Carrier.
P128	POWER_BTN#				Ι	Power-button input from carrier board. Carrier to float the line in in-active state. Active low, level sensitive. It is de-bounced on the Module Pulled up on Module. Driven by OD part on Carrier.
P129	SER0_TX	L17	ALT5	GPIO_IOO4 LPUART6_TX	0	Asynchronous serial port data out
P130	SER0_RX	L18	ALT5	GPIO_IO05 LPUART6_RX	I	Asynchronous serial port data in
P131	SER0_RTS#	L20	ALT5	GPIO_IOO6 LPUART6_CTS_B	0	Request to Send handshake line for SERO
P132	SER0_CTS#	L21	ALT5	GPIO_IOO7 LPUART6_RTS_B	I	Clear to Send handshake line for SERO
P133	GND				Р	Ground
P134	SER1_TX	F21	ALT0	UART2_TXD LPUART2_TX	0	Asynchronous serial port data out
P135	SER1_RX	F20	ALT0	UART2_RXD LPUART2_RX	I	Asynchronous serial port data in

SMAR	CEdge Finger	NXP i.M	1X93 CPU		Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
P136	SER2_TX	N20	ALT5	GPIO_IO12 LPUART8_TX		Asynchronous serial port data out
P137	SER2_RX	N21	ALT5	GPIO_IO13 LPUART8_RX		Asynchronous serial port data in
P138	SER2_RTS#	P21	ALT5	GPIO_IO15 LPUART8_RTS_B		Request to Send handshake line for SER2
P139	SER2_CTS#	P20	ALT5	GPIO_IO14 LPUART8_CTS_B		Clear to Send handshake line for SER2
P140	SER3_TX	E21	ALTO	UART1_TXD LPUART1_TX	0	Asynchronous serial port data out
P141	SER3_RX	E20	ALTO	UART1_RXD LPUART1_RX	I	Asynchronous serial port data in
P142	GND				Р	Ground
P143	CANO_TX	G17	ALT6	PDM_CLK CAN1_TX	0	CANO Transmit output
P144	CANO_RX	J17	ALT6	PDM_BIT_STREA MO CAN1_RX	I	CANO Receive input
P145	CAN1_TX	V21	ALT2	GPIO_IO25 CAN2_TX	0	CAN1 Transmit output
P146	CAN1_RX	W21	ALT2	GPIO_IO27 CAN2_RX	I	CAN1 Receive input

SMAR	C Edge Finger	NXP i.MX93 CPU		Туре	Description	
Pin#	Pin Name	Ball	Mode	Signal Name		
P147	VDD_IN				Р	Power in
P148	VDD_IN				Р	Power in
P149	VDD_IN				Р	Power in
P150	VDD_IN				Р	Power in
P151	VDD_IN				Р	Power in
P152	VDD_IN				Р	Power in
P153	VDD_IN				Р	Power in
P154	VDD_IN				Р	Power in
P155	VDD_IN				Р	Power in
P156	VDD_IN				Р	Power in

SMAR	CEdgeFinger	NXP	i.MX93 (CPU	Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
51	CSI1_TX+/ I2C_CAM1_CK					Not used
52	CSI1_TX-/ I2C_CAM1_DAT					Not used
53	GND				Ρ	Ground
54	RSVD					Not used
S5	CSI0_TX+ / I2C_CAM0_CK	C20	ALT0	I2C1_SCL LPI2C1_SCL	IO OD	Camera0 I2C bus clock
56	CAM_MCK	U4	ALTO	CCM_CLKO3 CCMSRCGPCMIX_ CLKO3	0	Master clock output for CSI camera support
57	CSIO_TX- / I2C_CAMO_DAT	C21	ALT0	I2C1_SDA LPI2C1_SDA	IO OD	Camera0 I2C bus data
58	CSIO_CK+	E10		MIPI_CSI1_CLK_P	I	CSI0 differential clock inputs
59	CSIO_CK-	D10		MIPI_CSI1_CLK_N	I	CSI0 differential clock inputs
510	GND				Ρ	Ground
S11	CSIO_RXO+	B11		MIPI_CSI1_D0_P	I	CSO differential data inputs 0+
512	CSIO_RXO-	A11		MIPI_CSI1_D0_N	I	CSI0 differential data input 0-
S13	GND				Р	Ground
S14	CSIO_RX1+	B10		MIPI_CSI1_D1_P	I	CSI0 differential data input 1+
S15	CSIO_RX1-	A10		MIPI_CSI1_D1_N	I	CSIO differential data inputs 1-
S16	GND				Ρ	Ground

SMARC	Edge Finger	NXP i.i	MX93 CPU	J	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
S17	GbE1_MDI0+				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Positive Channel 0
518	GbE1_MDI0-				AIO	Realtek RTL8211FD-CG: Differential Transmit/Receive Negative Channel 0
519	GbE1_LINK100#				O OD	Link Speed Indication LED for 100Mbps Could be able to sink 24mA or more Carrier LED current
520	GbE1_MDI1+				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Positive Channel 1
521	GbE1_MDI1-				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Negative Channel 1
522	GbE1_LINK1000#				O OD	Link Speed Indication LED for 1000Mbps Could be able to sink 24mA or more Carrier LED current

SMARC	Edge Finger	NXP i.	MX93 CP	V	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
523	GbE1_MDI2+				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Positive Channel 2
S24	GbE1_MDI2-				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Negative Channel 2
S25	GND				Р	Ground
S26	GbE1_MDI3+				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Positive Channel 3
S27	GbE1_MDI3-				AIO	Realtek RTL8211FD-CG Differential Transmit/Receive Negative Channel 3
S28	GbE1_CTREF					Not used
529	PCIE_D_TX+					Not used
530	PCIE_D_TX-					Not used
S31	GBE1_LINK_ACK #				O OD	Link / Activity Indication LED Driven low on Link (10, 100 or 1000 mbps) Blinks on Activity Could be able to sink 24mA or more Carrier LED current
532	PCIE_D_RX+					Not used
S33	PCIE_D_RX-					Not used
534	GND					Ground

SMARC	Edge Finger	NXP i.	MX93 CPI	V	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
S35	USB4+					Differential USB4 data pair (from USB2514 port 4)
536	USB4-					Differential USB4 data pair (from USB2514 port 4)
S37	USB3_VBUS_DET					Not used
538	AUDIO_MCK	R20	ALT1	GPIO_IO17 SAI3_MCLK	0	Master clock output to Audio codecs
539	I2S0_LRCK	V20	ALT7	GPIO_IO26S AI3_TX_SYNC	10	Left& Right audio synchronization clock
540	I2S0_SDOUT	R17	ALT7	GPIO_IO19 SAI3_TX_DATA 00	0	Digital audio Output
541	I2S0_SDIN	T20	ALT1	GPIO_IO2O SAI3_RX_DAT AOO	I	Digital audio Input
542	I250_CK	R21	ALT1	GPIO_IO16S AI3_TX_BCLK	10	Digital audio clock
S43	ESPI_ALERTO#					Not used
S44	ESPI_ALERT1#					Not used
S45	RSVD					Not used
S46	RSVD					Not used
S47	GND				G	Ground

SMARC Edge Finger		NXP i.	MX93 CI	ΡU	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
S48	I2C_GP_CK	Y21	ALT11	GPIO_IO29 LPI2C3_SCL	IO OD	General purpose I2C bus clock
S49	I2C_GP_DAT	W20	ALT11	GPIO_IO28 LPI2C3_SDA	IO OD	General purpose I2C bus clock
S50	HDA_SYNC/ I2S2_LRCK	G21	ALT0	SAI1_TXFS SAI1_TX_SYNC	10	Left& Right audio synchronization clock
S51	HDA_SDO⁄ I2S2_SDOUT	H21	ALT0	SAI1_TXD0 SAI1_TX_DATA00	0	Digital audio Output
S52	HDA_SDI/ I2S2_SDIN	H20	ALT0	SAI1_RXD0SAI1_ RX_DATA00	I	Digital audio Input
S53	HDA_CK/ I2S2_CK	G20	ALT0	SAI1_TXC SAI1_TX_BCLK	10	Digital audio clock
S54	SATA_ACT#					Not used
S55	USB5_EN_OC#					Not used
S56	ESPI_IO_2					Not used
S57	ESPI_IO_3					Not used
S58	ESPI_RESET#					Not used
S59	USB5+					Not used
560	USB5-					Not used
S61	GND				Ρ	Ground

SMARC Edge Finger		NXP i.MX93 CPU			Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
562	USB3_SSTX+					Not used
563	USB3_SSTX-					Not used
S64	GND				Р	Ground
S65	USB3_SSRX+					Not used
566	USB3_SSRX-					Not used
S67	GND				Р	Ground
S68	USB3+					Differential USB3 data pair (from USB2514 port 1)
S69	USB3-					Differential USB3 data pair (from USB2514 port 1)
570	GND				Ρ	Ground

SMARC Edge Finger		NXP i.I	NXP i.MX93 CPU			Description
Pin#	Pin Name	Ball	Mode	Signal Name		
S71	USB2_SSTX+					Not used
572	USB2_SSTX					Not used
S73	GND				Ρ	Ground
S74	USB2_SSRX+					Not used
S75	USB2_SSRX-					Not used
S76	PCIE_B_RST#					Not used
S77	PCIE_C_RST#					Not used
S78	PCIE_C_RX+					Not used
579	PCIE_C_RX-					Not used
580	GND				Р	Ground
S81	PCIE_C_TX+					Not used
582	PCIE_C_TX-					Not used
583	GND				Р	Ground

SMARC Edge Finger		NXP i.MX93 CPU			Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
S 84	PCIE_B_REFCK +					Not used
S85	PCIE_B_REFCK -					Not used
S86	GND				Ρ	Ground
S87	PCIE_B_RX+					Not used
588	PCIE_B_RX-					Not used
589	GND				Ρ	Ground
590	PCIE_B_TX+					Not used
S91	PCIE_B_TX-					Not used
592	GND				Р	Ground

SMAR	C Edge Finger	NXP i.	MX93 CI	PU	Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
593	DP0_LANE0+				AIO	eDP0 data pair 0+
594	DP0_LANE0-				AIO	eDP0 data pair 0-
S95	DP0_AUX_S EL					Not used
596	DP0_LANE1+				AIO	eDP0 data pair 1+
597	DP0_LANE1-				AIO	eDP0 data pair 1-
598	DP0_HPD				I	eDP 0 Hot Plug Detect pins
599	DP0_LANE2+				AIO	eDP0 data pair 2+
5100	DP0_LAN2-				AIO	eDP0 data pair 2-
5101	GND				Р	Ground
5102	DP0_LANE3+				AIO	eDP0 data pair 3+
S103	DP0_LANE3-				AIO	eDP0 data pair 3-

SMARC	Edge Finger	NXP i.i	МХ93 СР	V	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
S104	USB3_OTG_ ID					Not used
S105	DP0_AUX+					eDP0 auxiliary channel pair +
S106	DPO_AUX-					eDP0 auxiliary channel pair -
S107	LCD1_BKLT_EN	Port 2	3 of i2c GI	PIO Expander A	0	High enables lvds1 panel backlight
S108	LVDS1_CK+ / eDP1_AUX+ / DSI1_CLK+	A18	N/A	MIPI_DSI1_CLK_P	0	LVDS1/eDP1/DSI1 LCD differential clock pairs
5109	LVDS1_CK- / eDP1_AUX- / DSI1_CLK-	B18	N/A	MIPI_DSI1_CLK_N	0	LVDS1/eDP1/DSI1 LCD differential clock pairs
S110	GND				Р	Ground
S111	LVDS1_0+ / eDP1_TX0+ / DSI1_D0+	A16	N/A	MIPI_DSI1_D0_P	AIO	LVDS1/eDP1/DSI1 LCD data channel differential pairs 1
5112	LVDS1_0- / eDP1_TX0- / DSI1_D0-	B16	N/A	MIPI_DSI1_D0_N	AIO	LVDS1/eDP1/DSI1 LCD data channel differential pairs 1
S113	eDP1_HPD					Not used

SMARC	Edge Finger	NXP i.	MX93 CI	PU	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
5114	LVDS1_1+ / eDP1_TX1+ / DSI1_D1+	A17	N/A	MIPI_DSI1_D1_P	AIO	LVDS1/eDP1/DSI1 LCD data channel differential pairs 2
S115	LVDS1_1- / eDP1_TX1- / DSI1_D1-	B17	N/A	MIPI_DSI1_D1_N	AIO	LVDS1/eDP1/DSI1 LCD data channel differential pairs 2
S116	LCD1_VDD_EN	D8	ALT0	GPIO1_GPIO11 GPIO1_IO11	0	High enables lvds1 panel VDD
5117	LVDS1_2+ / eDP1_TX2+ / DSI1_D2+	A19	N/A	MIPI_DSI1_D2_P	AIO	LVDS1/eDP1/DSI1 LCD data channel differential pairs 3
S118	LVDS1_2- / eDP1_TX2- / DSI1_D2-	B19	N/A	MIPI_DSI1_D2_ N	AIO	LVDS1/eDP1/DSI1 LCD data channel differential pairs 3
S119	GND				Р	Ground
5120	LVDS1_3+ / eDP1_TX3+ / DSI1_D3+	A20	N/A	MIPI_DSI1_D3_P	AIO	LVDS1/eDP1/DSI1 LCD data channel differential pairs 4
5121	LVDS1_3- / eDP1_TX3- / DSI1_D3-	B20	N/A	MIPI_DSI1_D3_ N	AIO	LVDS1/eDP1/DSI1 LCD data channel differential pairs 4
5122	LCD1_BKLT_ PWM	T21	ALT6	GPIO_IO21 TPM4_CH1	0	LCD1 display backlight PWM control
S123	GPIO13	Port 12	2 of i2c C	iPIO expander B		GPI013
5124	GND				Ρ	Ground

SMARO	C Edge Finger	NXP i.	MX93 CI	PU	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
S125	LVDS0_0+ / eDP0_TX0+ / DSI0_D0+	B5	N/A	LVDS_D0_P	AIO	LVDS0 LCD data channel differential pairs 1
5126	LVDS0_0- / eDP0_TX0- / DSI0_D0-	A5	N/A	LVDS_D0_N	AIO	LVDSO LCD data channel differential pairs 1
S127	LCD_BKLT_ EN	Port 2	1 of i2c C	iPIO Expander A	0	High enables lvds0 panel backlight
5128	LVDS0_1+ / eDP0_TX1+ / DSI0_D1+	B4	N/A	LVDS_D1_P	AIO	LVDS0 LCD data channel differential pairs 2
5129	LVDS0_1- / eDP0_TX1- / DSI0_D1-	A4	N/A	LVDS_D1_N	AIO	LVDSO LCD data channel differential pairs 2
S130	GND				Р	Ground
S131	LVDS0_2+ / eDP0_TX2+ / DSI0_D2+	B2	N/A	LVDS_D2_P	AIO	LVDSO LCD data channel differential pairs 3
S132	LVDS0_2- / eDP0_TX2- / DSI0_D2-	A2	N/A	LVDS_D2_N	AIO	LVDS0 LCD data channel differential pairs 3

SMAR	PC Edge Finger	NXP	i.MX93 (CPU	Type	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
S133	LCD_VDD_E Pc N	ort 20 of	i2c GPIC) Expander A	0	High enables lvds0 panel VDD
S134	LVDS0_CK+ / eDP0_AUX+ / DSI0_CLK+	В3	N/A	LVDS_CLK_P	0	LVDS0 LCD differential clock pairs
S135	LVDS0_CK- / eDP0_AUX- / DSI0_CLK-	A3	N/A	LVDS_CLK_N	0	LVDS0 LCD differential clock pairs
S136	GND				Ρ	Ground
S137	LVDS0_3+ / eDP0_TX3+ / DSI0_D3+	С1	N/A	LVDS_D3_P	AIO	LVDS0 LCD data channel differential pairs 4
S138	LVDS0_3- / eDP0_TX3- / DSI0_D3-	B1	N/A	LVDS_TX3_N	AIO	LVDS0 LCD data channel differential pairs 4
S139	I2C_LCD_CK	U2 0	ALT11	GPIO_IO23 LPI2C5_SCL	IO OD	LCD display I2C bus clock
S140	I2C_LCD_DAT	AE 8	ATL0	LVDS1_I2C0_SDA LVDS1_I2C0_SDA		LCD display I2C bus clock
S141	LCD_BKLT_PWM	U21	ALT4	GPIO_1024 TPM3_CH3	0	LCD0 display backlight PWM control
5142	GPI012	A8	ALT0	GPI01_I008 GPI01_I008		GPIO
5143	GND				Р	Ground
S144	eDP0_HPD					Not used
S145	WDT_TIME_OUT#	Y3	ALT5	CCM_CLKO2 GPIO3_I027	0	Watchdog-Timer Output

SMAR	C Edge Finger	NXP i.MX93 CPU	Туре	Description
Pin#	Pin Name	Ball Mode Signal Name		
5146	PCIE_WAKE#		1	PCI Express Wake Event: Sideband wake signal asserted by components requesting wakeup.
S147	VDD_RTC		Ρ	Low current RTC circuit backup power - 3.0V nominal It is sourced from a Carrier based Lithium cell or Super Cap
5148	LID#	From Port0 of PCAL6408APWJ IO Expander	I	Lid open/close indication to Module. Low indicates lid closure (which system may use to initiate a sleep state). Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the Module Pulled up on Module. Driven by OD part on Carrier.

SMARC	Edge Finger	NXP i.i	MX93 CPI	U	Туре	Description
Pin#	Pin Name	Ball	Mode	Signal Name		
5149	SLEEP#	From Expan		PCAL6408APWJ IO	I	Sleep indicator from Carrier board. May be sourced from user Sleep button or Carrier logic. Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the Module. Pulled up on Module. Driven by OD part on Carrier.
S150	VIN_PWR_BAD#	£			Ι	Power bad indication from Carrier board. Module and Carrier power supplies (other than Module and Carrier power supervisory circuits) shall not be enabled while this signal is held low by the Carrier. Pulled up on Module. Driven by OD part on Carrier.

SMAR	RC Edge Finger	ΝΧΡ Ι.ΜΧ93ΜQ CPU	Type	Description
Pin#	Pin Name	Ball Mode Signal Name		
S151	CHARGING#	From Port2 of PCAL6408APWJ IO Expander	I	Held low by Carrier if DC input for battery charger is present. Pulled up on Module. Driven by OD part on Carrier.
5152	CHARGER_PRSNT #	From Port4 of PCAL6408APWJ IC Expander)	Held low by Carrier if DC input for battery charger is present.
S153	CARRIER_STBY#		0	The Module shall drive this signal low when the system is in a standby power state
S154	CARRIER_PWR_O N		0	Carrier board circuits (apart from power management and power path circuits) should not be powered up until the Module asserts the CARRIER_PWR_ON signal.
S155	FORCE_RECOV#		I	Pulled up on Module. Driven by OD part on Carrier.

SMAR	PC Edge Finger	NXP i.MX93MQ CPU	Type	Description
Pin#	Pin Name	Ball Mode Signal Name		
S156	BATLOW#	From Port3 of PCAL6408APWJ IO Expander	I	Battery low indication to Module. Carrier to float the line in in-active state. Pulled up on Module. Driven by OD part on Carrier.
S157	TEST#		I	Held low by Carrier to invoke Module SD Boot UP. Pulled up on Module. Driven by OD part on Carrier.
S158	GND		Р	Ground

Chapter

Power Control Signals between SMARC Module and Carrier

This Chapter points out the handshaking rule between SMARC module and carrier. Section include :

- SMARC-iMX93 Module Power
- Power Signals
- Power Flow and Control Signals Block Diagram
- Power States
- Power Sequences
- Terminations
- Boot Select

Chapter 4 Power Control Signals between SMARC-iMX93 Module and Carrier

SMARC modules are designed to be driven with a single +3V to +5.25V input power rail. Unlike Q7 module, there is no separate voltage rail for standby power, other than the very low current RTC voltage rail. All module operating and standby power comes from the single set of *VDD_IN* pins. This suits battery power sources well, and is also easy to use with non-battery sources.

SMARC module has specific handshaking rules to the carrier by SMARC hardware specification. To design the carrier board, users need to follow these rules or it might not boot up. Some pull-up and pull-down also need to be cared to make all functions work.

4.1 SMARC-iMX93 Module Power

4.1.1. Input Voltage / Main Power Rail

The allowable Module DC input voltage range for SMARC-*i*MX93 is from 3.0V to 5.25V. This voltage is brought in on the *VDD_IN* pins and returned through the numerous *GND* pins on the connector.

Ten pins are allocated to *VDD_IN*. The connector pin current rating is 0.5A per pin. This works out to 5A total for the 10 pins. At the lowest allowed Module input voltage, this would allow up to 16.75W of electrical power to be brought in (with no de-rating on the connector current capability). With a 40% connector current de-rating, up to 10W may be brought in at 3V.

SMARC-*i*MX93 typically consumes 2~4W and is pretty safe in using the connector.

4.1.2. No Separate Standby Voltage

There is no separate voltage rail for standby power, other than the very low current RTC voltage rail. *SMARC-iMX93* operating and standby power comes from the single set of *VDD_IN* pins. This suits battery power sources well, and is also easy to use with non-battery sources.

4.1.3. RTC/Backup Voltage

RTC backup power is brought in on the *VDD_RTC* rail. The RTC consumption is typically 15 microA or less. The allowable *VDD_RTC* voltage range shall be 2.0V to 3.25V. The *VDD_RTC* rail is sourced from a Carrier based Lithium cell, or it may be left open if the RTC backup functions are not required. *SMARC-iMX93* module is able to boot without a *VDD_RTC* voltage source.

Lithium cells, if used on Carrier, shall be protected against charging by a Carrier Schottky diode. The diode is placed in series with the positive battery terminal. The diode anode is on the battery side, and the cathode on the Module *VDD_RTC* side.

Note that if a Super cap is used, current may flow out of the Module *VDD_RTC* rail to charge the Super Cap.

4.1.4. Power Sequencing

The Module signal *CARRIER_PWR_ON* exists to ensure that the Module is powered before the main body of Carrier circuits (those outside the power and power control path on the Carrier). The main body of Carrier board circuits should not be powered until the Module asserts the *CARRIER_PWR_ON* signal as a high. Module hardware will assert *CARRIER_PWR_ON* when all Module supplies necessary for Module booting are up.

The IO power of carrier board will be turn on at the stage of power on sequence. If the IO power of carrier board been turn on earlier than the SMARC module, the

power on carrier board might feedback to *SMARC* module through IO lines and disturbs the *SMARC* module power on sequence. More seriously, it might cause to the CPU won't boot up. It is always recommended that the power on module has to be earlier than that on carrier board.

The boot up of module depends on when you release the reset signal of your carrier board. The module will boot up when the reset signal on your carrier board is released. Before that, the module will not boot up. That's why designer needs to put the *RESET_IN#* in the last stage of power to serve as the "*power good*" signal of the carrier board.

The module will not boot up till the module power is ready because the carrier board hasn't released the reset signal yet.

The sequence is as follows:

Module Power Ready --> CARRIER_POWER_ON -->RESET_IN# -->Boot Up

4.1.5. RESET_IN#

The SMARC module does not know the IO power status from the carrier board, and put RESET_IN# in the last stage of power can serve as the "power good" signal of carrier board. This also assures that the power of carrier board is good when SMARC module booting up.

4.1.6. VDD_10

The 3.3V VDD_IO is depreciated from SMARC 1.1 specification.

SMARC-*i*MX93 supports 1.8V VDD_IO only.

4.1.7. Power Bad Indication (VIN_PWR_BAD#)

Power bad indication is from carrier board and is an input signal for Module. Module and Carrier power supplies (other than Module and Carrier power supervisory circuits) will not be enabled while this signal is held low by the Carrier.

This signal has a 100K pull-up on module and is driven by OD part on Carrier.

4.1.8. System Power Domains

It is useful to describe an SMARC system as being divided into a hierarchy of three power domains:

1) Battery Charger power domain (can be neglected if the system is not battery powered only)

2) SMARC Module power domain

3) Carrier Circuits power domain

The Battery Charger domain includes circuits that are active whenever either charger input power and / or battery power are available. These circuits may include power supply supervisor(s), battery chargers, fuel gauges and, depending on the battery configuration, switching power section(s) to step down a high incoming battery voltage.

The SMARC Module domain includes the SMARC module.

The Carrier Circuits domain includes "everything else" (and does not include items from the Battery Charger and Module domain, even though they may be mounted on the Carrier).

This is illustrated in the figure below.

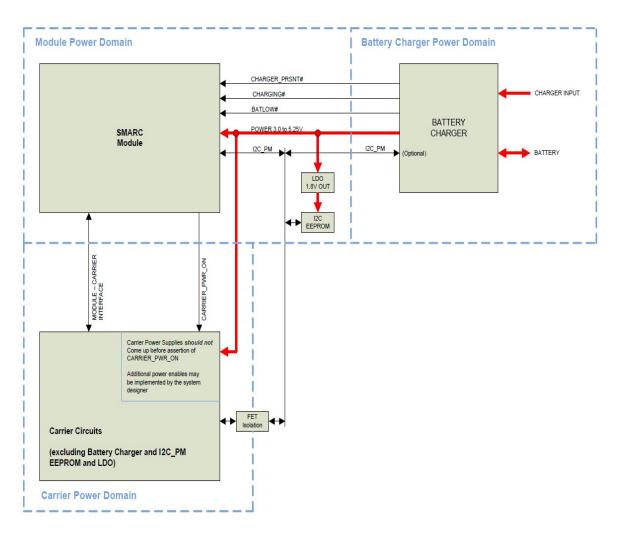


Figure 24 System Power Domains

4.2 Power Signals

4.2.1. Power Supply Signals

SMARC Edge Finger		I/O	Туре	Power Rail	Description
Pin#	Pin Name				
P147, P148, P149, P150, P151,P152, P153, P154, P155, P156	VDD_IN	I	PWR	3.0V~5.25V ¹	Main power supply input for the module
P2, S3, P9, S10, P12, S13, P15, S16, P18, S25, P32, S34, P38, S47, P47, P50, P53, P59, S61, S64, S67, P68, S70, S73, P79, S80, P82, S83, P85, S86, P88, S89, P91, S92, P94, P97, P100, S101, P103, S110, S119, P120, S124, S130, P133, S136, P142, S143, S158	GND	I	PWR		Common signal and power ground
S147	VDD_ RTC	I	PWR	3.3V	RTC supply, can be left unconnected if internal RTC is not used

4.2.2. Power Control Signals

The input pins listed in the following table are all active low and are meant to be driven by *OD* (open drain) devices on the Carrier. The Carrier either floats the line or drives it to *GND*. No Carrier pull-ups are needed. The pull-up functions are performed on the Module. The voltage rail that these lines are pulled to on the Module varies, depending on the design, and may be 3.3V or *VDD_IN*.

SMARU	CEdge Finger	I/O	Туре	Power	Description
Pin#	Pin Name			Rail	
S150	VIN_PWR_BAD#	I	CMOS	VDD_IN	Power bad indication from Carrier board
S154	CARRIER_PWR_ON	0	CMOS	VDD_10	Signal to inform Carrier board circuits being powered up
P126	RESET_OUT#	0	CMOS	VDD_IO	General purpose reset output to Carrier board.
P127	RESET_IN#	Ι	CMOS	VDD_IO	Reset input from Carrier board. Carrier drives low to force a Module reset, floats the line otherwise. Pulled up on Module. Driven by OD part on Carrier.
P128	POWER_BTN#	I	CMOS	VDD_10	Power-button input from Carrier board. Carrier to float the line in in-active state. Active low, level sensitive. It is de-bounced on the Module Pulled up on Module. Driven by OD part on Carrier.

4.2.3. Power Management Signals

The pins listed in the following table are related to power management. They will be used in a battery-operated system.

SMARC	. Edge Finger	I/O	Туре	Power Rail	Description
Pin#	Pin Name		nail		
S156	BATLOW#	I	CMOS	VDD_IO	Battery low indication to Module. Carrier to float the line in in-active state. Pulled up on Module. Driven by OD part on Carrier.
S154	CARRIER_PWR_ON	0	CMOS	VDD_IO	Signal to inform Carrier board circuits being powered up
S153	CARRIER_STBY#	0	CMOS	VDD_10	Module will drive this signal low when the system is in a standby power state
S152	CHARGER_PRSNT#	I	CMOS	VDD_10	Held low by Carrier if DC input for battery charger is present. Pulled up on Module. Driven by OD part on Carrier.

	Edge Finger	I/O	Туре	Power Rail	Description
<i>Pin#</i> S151	<i>Pin Name</i> CHARGING#	I	Strap	VDD_IO	Held low by Carrier during battery charging. Carrier to float the line when charge is complete. Pulled up on Module. Driven by OD part on Carrier.
S149	SLEEP#	I	CMOS	VDD_IO	Sleep indicator from Carrier board. May be sourced from user Sleep button or Carrier logic. Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the Module. Pulled up on Module. Driven by OD part on Carrier.
S148	LID#	I	CMOS	VDD_IO	Lid open/close indication to Module. Low indicates lid closure (which system may use to initiate a sleep state). Carrier to float the line in in-active state. Active low, level sensitive. Should be de-bounced on the Module Pulled up on Module. Driven by OD part on Carrier.

4.2.4. Special Control Signals (TEST#)

SMARC-*i*MX93 does not support to boot up from SPI NOR flash. SMARC-*i*MX93 module boots up from the onboard *e*MMC Flash first. The firmware in the *e*MMC flash will read the *BOOT_SEL* configuration and decides where to load the u-boot.

In some situations like the firmware in *eMMC* flash needed to be upgrade/restore or at factory default where the firmware in *eMMC* flash is empty or at development stage that the firmware in *eMMC* needs to be modified, users will need an alternative way to boot up from SD card first. The *TEST#* pin serves as this purpose. The *TEST#* pin is pulled high on module. If carrier board leaves this pin floating or pulls high, the module will boot up from on-module *eMMC*. If carrier board pulls this pin to *GND*, the module will boot up from *SD* card first. The first stage bootloader in *i.MX93* CPU ROM codes will load the 2nd stage bootloader based on the setting of this *#TEST* pin (S157).

4.3 Power Flow and Control Signals Block Diagram

Following figures shows the power flow and control signals block diagram.

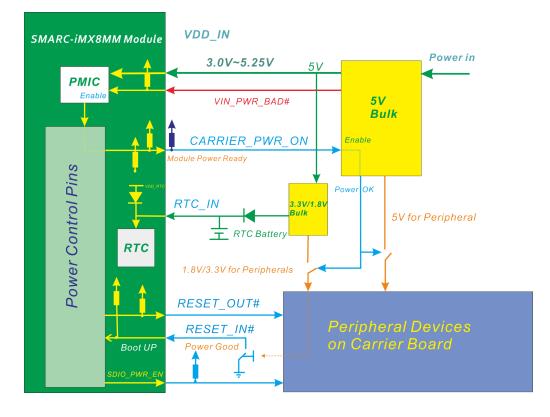


Figure 25 Power Block Diagram

When main power is supplied from the carrier, a voltage detector will assert *VIN_PWR_BAD#* signal to tell the module and carrier that the power is good. This signal will turn on the *PMIC* on module to power on the module.

Carrier power circuits in the carrier Power domain should not power up unless the module asserts *CARRIER_PWR_ON*. The module signal *CARRIER_PWR_ON* exists to ensure that the module is powered before the main body of carrier circuits (those outside the power and power control path on the carrier).

The main body of carrier board circuits will not be powered until the module asserts the *CARRIER_PWR_ON* signal being correct. Module hardware will assert *CARRIER_PWR_ON* when all power supplies necessary for module booting are ready. The module will continue to assert signal *RESET_OUT#* after the release of *CARRIER_PWR_ON*, for a period sufficient to allow carrier power circuits to come up. When Carrier power is ready, it will assert *RESET_IN#* to inform module booting up.

If users would like to have SD boot up, SDIO_PWR_EN signal have to be pull up to 3.3V on carrier.

Module and carrier power supplies will not be enabled if the VIN_PWR_BAD# is held low by carrier. It is a power bad indication signal from carrier and is 200k pull up to VDD_IN on module.

4.4 Power States

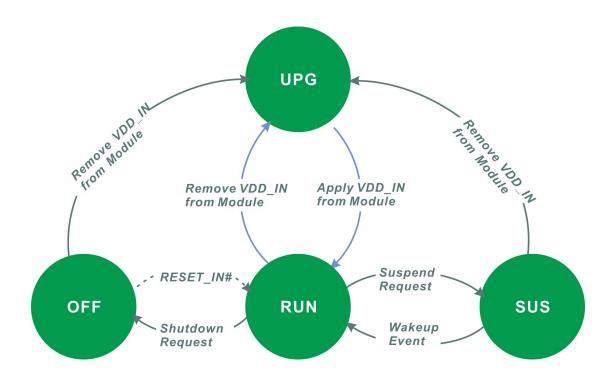
The *SMARC-iMX93* module supports different power states. The table below describes the behavior in the different states and which power rails and peripherals are active. Additional power states can be implemented if required using available GPIOs to control additional power domains and peripherals.

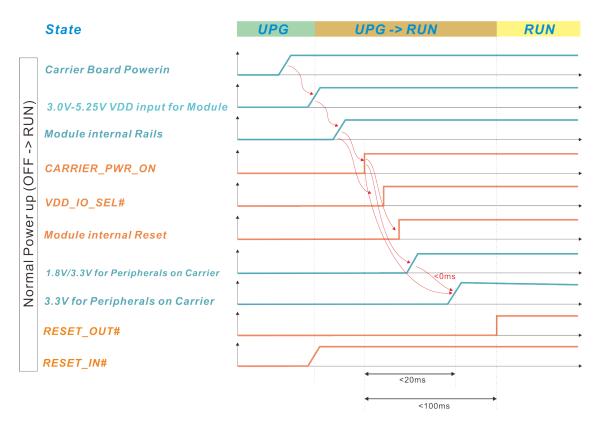
Abbr.	Name	Description	Module	Carrier Board
UPG	Unplugged	No power is applied to the system, except the RTC battery might be available	No main VDD_IN applied from fixed DC supply, VDD_IN available if backup battery is implemented	No power supply input, RTC battery maybe inserted
OFF	off	System is off, but the carrier board input supply is available	The main VDD_IN is available, but the CPU and peripherals are not running. Only the PMIC is running	Carrier board provides power for module, the peripheral supplies are not available
SUS	Suspend	System is suspended and waits for wakeup sources to trigger	CPU is suspended, wakeup capable peripherals are running while others might be switched off	Power rails are available on carrier board, peripherals might be stopped by software
RUN	Running	System is running	All power rails are available, CPU and peripherals are running	All power rails are available, peripherals are running
RST	Reset	System is put in reset state by holding RESET_IN# is low	All power rails are available, CPU and peripherals are in reset state	All power rails are available, peripherals are in reset state

The figure below shows a sequence diagram for the different power states. The module automatically enters into the running mode when the main power rail is applied to the module. In the running mode, the system can be set to suspend by software. There might be different wake up sources available. Consult the

datasheet for SMARC-*i*MX93 module for more information about the available wakeup events.

In the running state, a shutdown request can be triggered by software. This turns off all power rails on the module and requests the carrier board to switch of the power rails for the peripherals. The module can be brought back to the running mode in two ways. The module main voltage rail (*VDD_IN*) can be removed and applied again. If needed, this could also be done with a button and a small circuit. *SMARC-iMX93* module supports being power cycled by asserting the *RESET_IN#* signal (e.g. by pressing the reset button or shunt and relief the reset jumper), please consult the associated module datasheet for more information about the support power cycle methods.




Figure 26 Power States and Transitions

4.5 Power Sequences

When main power is supplied from the carrier, a voltage detector will assert *VIN_PWR_BAD#* signal to tell the module and carrier that the power is good. This signal will enable the *PMIC* on module to power on the module. The module will not power up if the module receives a low-active *VIN_PWR_BAD#* signal.

The SMARC-*i*MX93 module starts asserting CARRIER_PWR_ON as soon as the main voltage supply being applied to the module and all power supplies necessary for module booting are up. This is to ensure that the module is powered before the main body of carrier circuits (those outside the power and power control path on the carrier). The module will continue to assert signal *RESET_OUT#* after the release of *CARRIER_PWR_ON*, for a period sufficient time (at least 10ms) to allow carrier power circuits that the peripheral supplies need to ramp up.

The peripheral power rails on the carrier board need to ramp up in a correct sequence. The sequence starts normally with the highest voltage (e.g. 5V) followed by the lower voltages (e.g. 3.3V then 1.8V and so on). Peripherals normally require that a lower voltage rails is never present if a higher rail is missing. Check the datasheet of all peripheral components on the carrier board for a proper sequencing. The *SMARC-iMX93* modules guarantees to apply the reset output *RESET_OUT#* not earlier than 100ms after the *CARRIER_PWR_ON* goes high. This gives the carrier board a sufficient time for ramping up all power rails. *SDIO_PWR_EN* signal have to be pull up to 3.3V on carrier if users would like to have SD boot up functionality.

Figure 27 Power-Up Sequences

If the operating system supports it, a shutdown sequence can be initiated. Some systems may benefit from shutting down instead of just removing the main power supply as this allows the operating system to take care of any housekeeping (e.g. bringing mass storage devices to a controlled halt). Some operating system may not provide the shutdown function.

As it is not permitted that a lower voltage rail is present when a higher voltage rail has been switched off, the sequence of shutting down the peripheral voltages needs to be considered. The lower voltages (e.g. peripheral 3.3V) need to ramp down before the higher ones do (e.g. peripheral 5V).

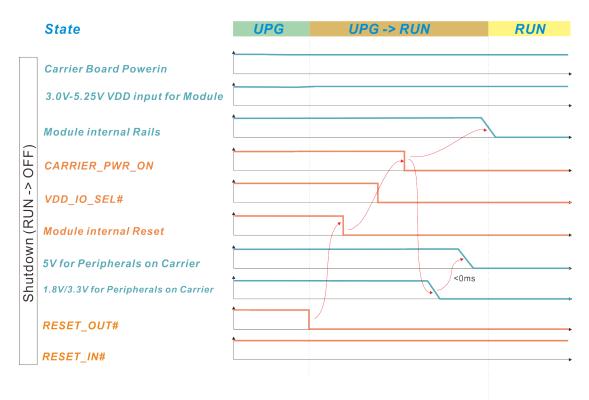


Figure 28 Shutdown Sequence

When the *RESET_IN#* is asserted, a reset cycle is initiated. The module internal reset and the external reset output *RESET_OUT#* are asserted as long as *RESET_IN#* is asserted. If the reset input *RESET_IN#* is de-asserted, the internal reset and the *RESET_OUT#* will remain low for at least 1ms until they are also de-asserted and the module starts booting again. This guarantees a minimum reset time of 1ms even if the reset input *RESET_IN#* is triggered for a short time.

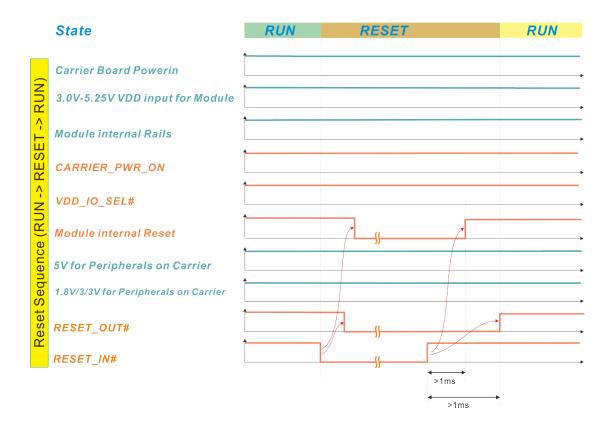


Figure 29 Reset Sequence

4.6 Terminations

4.6.1. Module Terminations

The Module signals listed below will be terminated on the Module. The terminations follow the guidance given in the table below.

Signal Name	Series Termination	Parallel Termination	Notes
I2C_PM_DAT		2.2K pull-up to 1.8V	
I2C_PM_CK		2.2K pull-up to 1.8V	
I2C_LCD_DAT		2.2K pull-up to 1.8V	
I2C_LCD_CK		2.2K pull-up to 1.8V	
I2C_CAM[0:1]_DAT		2.2K pull-up to 1.8V	
IZC_CAM[0:1]_CK		2.2K pull-up to 1.8V	
IZC_GP_DAT		2.2K pull-up to 1.8V	
IZC_GP_CK		2.2K pull-up to 1.8V	
SDIO_CD#		10k pull-up to 3.3V	
SDIO_WP		10k pull-up to 3.3V	

Signal Name	Series Termination	Parallel Termination	Notes
USB[0:4]_EN_OC#		10K pull-up to 3.3V or a switched 3.3V on the Module	x is '0' or '1' Switched 3.3V: if a USB channel is not used, then the USBx_EN_OC# pull-up rail may be held at GND to prevent leakage currents.
VIN_PWR_BAD#		200k pull-up to VIN	

4.6.2. Carrier/Off-Module Terminations

The following Carrier terminations are required, if the relevant interface is used. If unused, the SMARC Module pins may be left un-connected.

Module Signal Group Name	Carrier Series Termination	Carrier Parallel Termination	Notes
GBE_MDI	Magnetics module appropriate for 10/100/1000 GBE transceivers	Secondary side center tap terminations appropriate for Gigabit Ethernet implementations	
GBE_LINK (GBE status LED sinks)		If used, current limiting resistors and diodes to pulled to a positive supply rail	The open drain GBE status signals, GBE_LINK100#, GBE_LINK1000# and GBE_LINK_ACT#, if used, need Carrier based current limiting resistors and LEDs. The LED may be integrated into a Carrier RJ45 jack. A resistor of 68 ohms, and a LED with the anode tied to Carrier 3.3V, is typical.
LVDS LCD		100 ohm resistive termination across the differential pairs at the endpoint of the signal path, usually on the display assembly	

4.7 Boot Device Selection

SMARC hardware specification defines three pins (BOOT_SEL[0:2]) that allow the Carrier board user to select from eight possible boot devices. SMARC-*i*MX93 does not support boot up from SPI flash. If *TEST#* is not shunt cross to GND, the first stage of bootloader on SMARC-*i*MX93 will boot up from on-module *e*MMC first. The firmware on *e*MMC will read the boot device configuration and load the second stage bootloader from selected boot devices. The *BOOT_SELx#* pins are weakly pulled up on the Module and the pin states decoded by module logic. The Carrier shall either leave the Module pin Not Connected ("Float" in the table below) or shall pull the pin to GND, per the table below.

	Carrier Connection			Boot Source
	BOOT_SEL2#	BOOT_SEL1#	BOOT_SELO#	
0	GND	GND	GND	Carrier SATA
1	GND	GND	Float	Carrier SD Card
2	GND	Float	GND	Carrier eSPI (CSO#)
3	GND	Float	Float	Carrier SPI
4	Float	GND	GND	Module Device (USB)
5	Float	GND	Float	Remote Boot (GBE)
6	Float	Float	GND	Module eMMC Flash
7	Float	Float	Float	Module SPI

If *TEST*# pin is shunt cross to GND, the first stage of bootloader on *SMARC-iMX93* will boot up from off-module *SD* card. This is a back door to restore/upgrade the firmware in on-module *eMMC*.