SMARC-FiMX6-ANDROID-M6.0.1-2.0.1

On this page:

® Building Freescale/Embedian’s Android M6.0.1_2.0.1 BSP Distribution
" |ntroduction
® Generating SSH Keys
® Step 1. Check for SSH keys
® Step 2. Generate a new SSH key
® Step 3. Add your SSH key to Embedian Gitlab Server
® Qverview of this document
" Hardware Requirement
" Host (PC) setup requirements
® |nstall required packages on host PC
" |nstall the OpenJDK
® Obtain Source Code
® Get NXP's Android Release Package
® Download Google Android M6.0.1
" Clone Embedian's U-Boot and Linux kernel sources
= Apply all the i.MX Android patches with Freescale i.MX6 support
= Apply Embedian's i.MX6 platforms' patches
® Build Android Images
® Switching from eMMC build to SD card build and vice versa
® Build Android for SD card
® Build Android for on-SMARC eMMC
" |mages created by the Android build for Embedian SMARC-FiMX6 system
® Setup Bootloader
" |nstall Bootloader
" |f SPI NOR Flash is not empty (Factory Default)
" |f SPI NOR Flash is empty
" Setup SD card
" Setup eMMC
" Use MFG Tools v2
® Use a Ubuntu 14.04 Bootable SD card
® Use USB Fastboot
= Android Recovery Mode
® Enter board in Android Recovery mode
® Update Android Firmware
" Generate OTA Packages
" |nstall OTA Packages to device
® Manual Operations
® Build boot.img
Toolchain setup for manual build kernel and U-Boot
Manual build Bootloader
Manual build Android Linux Kernel and modules

Building Freescale/Embedian’s Android M6.0.1_2.0.1 BSP Distribution

Eric Lee

version 1.0a, 1/15/2017

Introduction

This document describes how to build and deploy Android Marshmallow on the SMARC-FiMX®. It is based on NXP's IMX6_M6.0.1_2.1.0-ga
ANDROID release.

Generating SSH Keys

In order to download u-boot and kernel from Embedian. We recommend you use SSH keys to establish a secure connection between your
computer and Embedian Gitlab server. The steps below will walk you through generating an SSH key and then adding the public key to our Gitlab
account.

Step 1. Check for SSH keys

First, we need to check for existing ssh keys on your computer. Open up Git Bash and run:

$ cd ~/.ssh
$1s
Lists the files in your .ssh directory

Check the directory listing to see if you have a file named either i d_r sa. pub ori d_dsa. pub. If you don't have either of those files go to step 2
. Otherwise, you already have an existing keypair, and you can skip to step 3.

Step 2. Generate a new SSH key

To generate a new SSH key, enter the code below. We want the default settings so when asked to enter a file in which to save the key, just press
enter.

$ ssh-keygen -t rsa -C "your_enai | @xanpl e. cont

Creates a new ssh key, using the provided enail as a | abel

CGenerating public/private rsa key pair.

Enter file in which to save the key (/c/Users/you/.ssh/id_rsa): [Press enter]
$ ssh-add id rsa

Now you need to enter a passphrase.

Enter passphrase (enpty for no passphrase): [Type a passphrase]
Enter same passphrase again: [Type passphrase agai n]

Which should give you something like this:

Your identification has been saved in /c/Users/you/.ssh/id_rsa.

Your public key has been saved in /c/Users/you/.ssh/id_rsa. pub.

The key fingerprint is:

01: 0f : f4: 3b: ca: 85:d6: 17: al: 7d: f 0: 68: 9d: f 0: a2: db your _enmi | @xanpl e. com

Step 3. Add your SSH key to Embedian Gitlab Server

Copy the key to your clipboard.

$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaClyc2EAAABDAQABAAABAQDQUENh8uGpf xazVU6+uE4bsDr s/ t EES/ BPWj MAxak

6ggCh6NnUr QCBWS+VXMVRUN3KzWLRIS] 8GATNTK2CSn BvR+X8Ze XNTy AdaDxULs/ St VhH+QRt FEGy 40

i M zvl| TyORY89j zhl sgZzwr 01nqoSeWMSd+59JW Fj Vy OnwVNVt bek 7Nf ul GGAPai j C6Whshr 2uChB

Pk8ScG @Bz4VgNXP6CVWhCXTql k7EQ 7y X2CKd6FgEFr zae+5Jf 63XnBg6abbE3yt Cr MI/ j Yy500 2XSg

6j | XxSFNKcONAcf MTVk TXeG OgeGeGhkZdt qr yRt O GnOeuQeldd3l +Z2z3JyT your _enai | @xanpl e. ¢
om

Go to Embedian Git Server. At Profile Setting --> SSH Keys --> Add SSH Key

Paste your public key and press "Add Key" and your are done.

http://git.embedian.com/

Overview of this document

The objective of this document is to guide SMARC-FiMX6 Android developers to obtain Android Marshmallow sources, setting up host
environment, compilation and deployment.

This document contains instructions for:

Hardware and software requirements.

Setup the hardware.

Setup the toolchain.

Download & build the sources.

Install the binaries on the SMARC-FiMX6 SOM.

Hardware Requirement
EVK-STD-CARRIER and SMARC-FiMX®6.

Host (PC) setup requirements

The host development environment for Android is based on Ubuntu and Debian, please install Ubuntu version 14.04 64bit LTS http://www.ubuntu.
com/download/desktop or Debian 8.4 64bit https://www.debian.org/releases

1 Do not use other Ubuntu or Debian releases, than recommended above.

Install required packages on host PC

$ sudo apt-get -y install git-core gnupg flex bison gperf build-essential zip curl
zliblg-dev gcc-multilib g++-multilib

$ sudo apt-get -y install |ibc6-dev-i386 |ib32ncurses5-dev x1lproto-core-dev

i bx11-dev |ib32z-dev ccache |ibgl 1-nmesa-dev |ibxm 2-utils

$ sudo apt-get -y install xsltproc unzip ntd-utils u-boot-tools |zop Iiblzo2-2

I'i bl zo2-dev zliblg-dev |iblz-dev uuid uuid-dev android-tools-fsutils

Install the OpenJDK

$ sudo apt-get update
$ sudo apt-get install openjdk-7-jdk

Update the default Java version by running:

$ sudo update-alternatives --config java
$ sudo update-alternatives --config javac

1 The build machine should have at least 50GB of free space to complete the build process.

Obtain Source Code

Get NXP's Android Release Package

Go to NXP's website, download IMX6_M6.0.1_2.1.0_ANDROID_SOURCE_BSP (filename: android_M6.0.1_2.1.0_source.tar.gz) and put into
your ~/downloads directory.

$ cd ~/ downl oads
$ tar xvfz android_Ms.0.1_2.1.0_source.tar.gz

Download Google Android M6.0.1

nkdir -p ~/android/ smarcfinm6/ m601_210_build

cd ~/androi d/ smarcfimk6/ m 601_210_build

nkdir ~/bin

curl http://comondat ast or age. googl eapi s. com gi t - r epo- downl oads/ repo > ~/ bin/repo
chnod a+x ~/ bin/repo

export PATH=~/bi n: $PATH

repo init -u https://android. googl esource.com platfornimani fest -b androi d-6.0.1_r22

R R]

$ repo sync -j4

Clone Embedian's U-Boot and Linux kernel sources

nkdir -p ~/android/ smarcfim6/ m 601 210 _buil d/ boot abl e/ boot | oader

cd ~/androi d/ smarcfi nk6/ m 601_210_bui | d/ boot abl e/ boot | oader

git clone git@it.enbedi an. com devel oper/ smarc-t335x-uboot. git uboot-ink

cd uboot -i nx

git checkout smarc-n6.0.1_2.1.0-ga

cd ~/ androi d/ smarcfinmk6/ m601_210_build

git clone git@it.enbedi an.com devel oper/smarc-fsl-linux-kernel.git kernel _inx
cd kernel _inx

git checkout smarc-n6.0.1_2.1.0-ga

L e e R A <

Apply all the i.MX Android patches with Freescale i.MX6 support

$ cd ~/android/ smarcfim6/ m601_210 build
$ source ~/downl oads/androi d_Ms.0.1_2.1.0 source/code/ M6.0.1_2.1.0/and_patch. sh

**** | nvoke ". and_patch.sh" fromyour shell to add follow ng functions to your
environment :

*¥x*x%__ c_gotop: Changes directory to the top of the tree

¥**x%__ c_patch: Recover working tree to base version and then applying FSL android
patch

$ c_patch ~/downl oads/android_M.0.1_2.1.0_source/code/M5.0.1_2.1.0 inkx_M5.0.1_2.1.0
If everything is OK, "c_patch" generates the follow ng output to indicate the
successful patch

EEE R I R S I R O I R R R S R O I

Success: Now you can build android code for FSL i.MX platform
EE R I I I R S R R I R O O

Apply Embedian's i.MX6 platforms' patches

$ cd ~/androi d/ smarcfinmk6

$ git clone http://git.enbedi an. com devel oper/smarc-fi m6-android.git enbedi an
$ cd enbedi an

$ git checkout smarc-n6.0.1_2.1.0-ga

$cd ../

$ enbedi an/inst al

Build Android Images

Change to Android top level directory.

$ cd ~/android/ smarcfinm6/ m601_210 build

$ source buil d/ envsetup. sh

$ export JAVA HOVE=/usr/lib/jvm java-1.7.0-openjdk-and64
$ export PATH=$JAVA HOVE/ bi n/ : $PATH

$ lunch smarc_nx6-eng

or

$ lunch smarc_nx6-user

| smarc_mx6-user creates a production version of the Android Marshmallow. smarc_mx6-eng creates an engineering version of the
Android Marshmallow. Development mode enable and development tools are available on target.

Switching from eMMC build to SD card build and vice versa

When you switch your target MMC device you need to remove the fstab file. This will guarantee that the make system will copy the right one into
target.

$ rmout/target/ product/smarc_nx6/recovery/root/fstab*
out/target/product/smarc_nx6/root/fstab*

Build Android for SD card

$ nmake -j4 BU LD_TARGET DEVI CE=sd 2>&1 | tee buildl-1.1og

1 When running Android from an SD card, the eMMC will be detected and presented as an SD card storage.

Build Android for on-SMARC eMMC

$ nmake -j 4 BU LD TARGET DEVI CE=ermt 2>&1 | tee buildl-1.1o0g

Images created by the Android build for Embedian SMARC-FIMX6 system

All images will be created under out/target/product/smarc_mx6 directory.

Image Description

boot-<namel>-<name2>.img Boot image that contains zImage, device tree blob and ramdisk
recovery-<namel>-<name2>.img Recovery image that contains zlmage, device tree blob and ramdisk
system.img Android system image file.

u-boot-<defconfig>.img Bootloader

1 1. <namel>: smarcfimx6dl is for solo and dual lite core and smarcfimx6dq is for dual and quad core i.MX6 processor.
’ 2. <name2>: If display output is HDMI or parallel RGB, this field is not necessary. If display output is LVDS LCD, this field stands
for the LVDS LCD resolutions (wvga, wxga, xga, 1080p, etc...).
3. <defconfig>: This is the u-boot defconfig file. If you use quad core and 1GB DDR3L memory, SER3 as your console output
port, the u-boot file that you should use is u-boot-smarcfimx6_quad_1g_ser3_android_defconfig.imx. If you use dual lite core
and use SER3 as console output, the u-boot file that you should use is u-boot-smarcfimx6_dl_1g_ser3_android_defconfig.imx.

Setup Bootloader

U-Boot boots from on-module SPI NOR flash, and the rest of the Android images will be loaded from SD card or on-module eMMC.

To flash u-boot into on-module SPI NOR flash. First, you need to prepare for a new SD card and insert into your Linux host PC. The u-boot-<defc
onfig>.imx is pre-installed in SPI NOR flash at factory default. SMARC-FiMX6 is designed to always boot up from SPI NOR flash and to load other
Android images based on the setting of BOOT_SEL. If users need to fuse their own u-boot or perform u-boot upgrade. This section will instruct
you how to do that.

For these instruction, we are assuming: DISK=/dev/mmcblk0, "Isblk" is very useful for determining the device id.
$ export DISK=/dev/mmcblkO

Erase SD card:
$sudo dd if=/dev/zero of =${DI SK} bs=1M count =16

Create Partition Layout:

With util-linux v2.26, sfdisk was rewritten and is now based on libfdisk.

sfdisk
$ sudo sfdisk --version
sfdisk fromutil-linux 2.17.1

Create Partitions:

{D sfdisk >=2.26.x
$ sudo sfdisk ${DI SK} <<-__ EOF__

1M 48M 0x83, *

EOF

(D sfdisk <=2.25
$ sudo sfdisk --in-order --Linux --unit M ${Dl SK} <<-__ EOF
1, 48, 0x83, *

__EGF__

Format Partitions:

for: DI SK=/dev/ mtbl kO
$ sudo nkfs.vfat -F 16 ${Dl SK} p1 -n boot

for: DI SK=/dev/sdX
$ sudo nkfs.vfat -F 16 ${DI SK}1 -n boot

Mount Partitions:

On some systems, these partitions may be auto-mounted...

$ sudo nkdir -p /medialboot/

for: DI SK=/dev/ mtbl kO
$ sudo nount ${DI SK} p1 / medi a/ boot/

for: DI SK=/dev/sdX
$ sudo nount ${Dl SK} 1/ medi a/ boot /

Copy u-boot-<defconfig>.imx to the boot partition.

~/android/smarcfimx6/m_601_210_build/out/target/product/smarc_mx6

$ sudo cp -v u-boot-<defconfig>.inmx /nedial/boot/u-boot.inmx

Install Bootloader

If SPI NOR Flash is not empty (Factory Default)

Fuse u-boot.imx to the SPI NOR flash.

Insert the SD card that you just made into EVK-STD-CARRIER SD card slot. Stop at U-Boot command prompt (Press any key when
booting up). Copy and Paste the following script under u-boot command prompt.

u-boot command prompt

U-Boot# mmt rescan; mmt dev; load nmt 0: 1 0x10800000 u-boot.inx; sf probe; sleep 2; sf erase 0 0xc0000;
sf wite 0x10800000 0x400 80000

If SPI NOR Flash is empty

In some cases, when SPI NOR flash is erased or the u-boot is under development, we need a way to boot from SD card first. Users need to
shunt cross the TEST# pin to ground. In this way, SMARC-FiMX6 will always boot up from SD card.

Insert the same SD card into your host Linux PC.

Copy u-boot.imx to the SD card.

~/android/smarcfimx6/m_601_210_build/out/target/product/smarc_mx6

$ sudo dd if=u-boot-<defconfig>inmk of =${Dl SK} bs=512 seek=2

Insert the SD card into EVK-STD-CARRIER. Stop at U-Boot command prompt (Press any key when booting up). Copy and Paste the
following script under u-boot command prompt.

u-boot command prompt

U-Boot# mmt rescan; mmt dev; load nmmt 0:1 0x10800000 u-boot.inx; sf probe; sleep 2; sf erase 0 0xc0000;
sf wite 0x10800000 0x400 80000

Setup SD card

Prepare for the othe SD card that is differmt from the one for bootloader. Insert into your Linux host PC

$ cd ~/android/ smarcfinm6/ m 601_210_buil d/ out/target/product/smarc_nx6/
$ cp ~/android/ snmarcfink6/ m 601 210 buil d/ enmb- nksdcard. sh
$ sudo ./enb-nksdcard.sh -f <nanel>-<nane2> /dev/sdX;sync

1. <namel>: smarcfimx6dl is for solo and dual lite core and smarcfimx6dq is for dual and quad core i.MX6 processor.
2. <name2>: If display output is HDMI or parallel RGB, this field is not necessary. If display output is LVDS LCD, this field stands
for the LVDS LCD resolutions (wvga, wxga, xga, 1080p, etc...).

Setup eMMC

First, make sure the images that you built is for eMMC (use BUILD_TARGET_DEVICE=emmc when built Android).

Setup eMMC for Android is a bit complex, but trivial. There are a couple of ways to achieve it.

Use MFG Tools v2

NXP/Freescale provides with a way to boot up, partition, format, and program images into eMMC. User can go to NXP's website to download
mfgtool and follow their guide to achieve it. We will leave it to users if you would like to use this method to set up your eMMC. Make sure that the
FORCE_RECOV# pin has to be shunt to Ground when using this tool.

Use a Ubuntu 14.04 Bootable SD card

The second way that we also recommend is to make a bootable Ubuntu 14.04 SD card for SMARC-FiMX6. User go to our Linux Development
Site to learn how to make a bootable Ubuntu 14.04 SD card. An pre-built images can be downloaded from our ftp site. Users can download those
images and follow the "Setup SD card" section from our Linux development site. Once it done, you can copy the emb-mksdcard.sh scipt and all
Android images into your home directory. Follow exactly what you did for SD card, but now, eMMC device will be emulated as /dev/mmcblk3.

$ sudo ./enb-nksdcard.sh -f <nanel>-<nane2> /dev/ mthl k3; sync

1 1. <namel>: smarcfimx6dl is for solo and dual lite core and smarcfimx6dq is for dual and quad core i.MX6 processor.
2. <name2>: If display output is HDMI or parallel RGB, this field is not necessary. If display output is LVDS LCD, this field stands
for the LVDS LCD resolutions (wvga, wxga, xga, 1080p, etc...).

Power off and set BOOT_SEL to OFF ON ON and you will be able to boot up your Android from on-module eMMC.

Use USB Fastboot

The third way is to use Android USB fast boot. This way will work only when the on-module eMMC is partitioned and formatted. To partition and
format the on-module eMMC. You can use the SD card mentioned above.

$ sudo ./enb-nksdcard.sh -np /dev/ mthl k3

Once you have your on-module eMMC partitioned and formated.

http://developer.embedian.com/display/LOS/SMARC-FiMX6
http://developer.embedian.com/display/LOS/SMARC-FiMX6
http://developer.embedian.com/display/LOS/SMARC-FiMX6
ftp://ftp.embedian.com/public/smarcfimx6_ubuntu/

On your Linux host PC, you need to install Android tools.

$ sudo apt-get install android-tool s-adb android-tool s-fastboot

Connect the device with host PC at fastboot mode:

1. Connect a USB OTG cable from the target board OTG port to a your host machine USB HOST port.
2. Power up the board and hit return/space to stop the boot at U-Boot.
3. type fastboot in the U-Boot command line.

On the Host PC:

$ sudo fastboot flash boot out/target/product/smarc_nx6/boot-<nanel>-<nane2>.i ngy
$ sudo fastboot flash recovery
out/target/product/smarc_nx6/recovery-<nanmel>-<nanme2>.ing

$ sudo fastboot flash system out/target/product/smarc_nx6/systeming

$ sudo fasthboot reboot

Android Recovery Mode

Enter board in Android Recovery mode

Shunt LID# pin to ground will enter Android Recovery mode.

Update Android Firmware

Generate OTA Packages
For generating "OTA" packages, use the following commands:
$ cd ~/androi d/ smarcfinmk6/m 601_210_bui | d/
if Android for SD card
$ nake -j4 BU LD TARGET_DEVI CE=sd ot apackage 2>&1 | tee buildl-1.1o0g

if Android for eMMC
$ nake -j4 BU LD TARGET_DEVI CE=emmt ot apackage 2>&1 | tee buildl-1.1o0g

Install OTA Packages to device

1. Enter to Android Recovery mode
2. Select menu item "apply update from ADB"
3. To the host system, perform the following command:

$ out/host/Ilinux-x86/bin/adb sidel oad
out/target/product/smarc_nx6/ smarc_nx6- ot a- <dat a>- <i nage-i d>. zi p

Reboot the device.

1 Real example name for OTA package: out/target/product/smarc_mx6/smarc_mx6-ota-20170114-smarcfimx6dg-wvga.zip

Manual Operations

Build boot.img

When you perform changes to the kernel, you may build boot.img solely instead of building the whole Android.

$ cd ~/androi d/smarcfinx6/ m601_210_ buil d/
$ source buil d/ envset up. sh

$ lunch smarc_nx6-user (or smarc_nx6-eng)
$ make booti mage

Toolchain setup for manual build kernel and U-Boot

Setup the toolchain path to point to arm-eabi- tools in prebuilts/gcc/linux-x86/arm/arm-eabi-4.8/bin

$ export ARCH=arm

$ export

CROSS_COWPI LE=~/ andr oi d/ smar cfi nx6/ m 601_210_bui | d/ prebui | t s/ gcc/ i nux-x86/arnil ar m eab
i -4.8/bin/arm eabi -

Manual build Bootloader

Change directory to U-Boot

$ cd ~/androi d/smarcfinmx6/ m 601 210 bui | d/ boot abl e/ boot | oader/ uboot -i nx

Execute following commands:

$ make distclean
$ nmake smarcfinmk6_quad_1g_ser 3_androi d_defconfig
$ nake -j4

1 Notel:

If the board is SMARC-FiIMX6-Q-2G or SMARC-FiIMX6-D-2G, use
$ make ARCH=arm CROSS_COMPILE=${CC} smarcfimx6_quad_2g_ser3_android_defconfig

If the board is SMARC-FiMX6-Q-1G or SMARC-FiMX6-D-1G, use
$ make ARCH=arm CROSS_COMPILE=${CC} smarcfimx6_quad_1g_ser3_android_defconfig

If the board is SMARC-FiMX6-U-1G, use
$ make ARCH=arm CROSS_COMPILE=${CC} smarcfimx6_dI_1g_ser3_android_defconfig

If the board is SMARC-FiMX6-S, use
$ make ARCH=arm CROSS_COMPILE=${CC} smarcfimx6_solo_ser3_android_defconfig

Note 2:

"ser3" stands for console debug port. In this example, we uses SER3 as debug port. If user uses SERO as your debug port, make
change to "ser0" instead. Same as SER1 and SER2.

Note 3:

The SMARC-FiMX6 module always boot up from the onboard SPI NOR flash. The factory default will be u-boot.imx pre-installed. In
some cases when the SPI NOR flash is empty or needs to be upgraded. Users can shunt crossed the TEST# to ground. In this way,
the SMARC-FiMX6 module will boot up to carrier SD card, if TEST# pin is shunt crossed. The u-boot.imx image are the same, the
difference is how you flash u-boot.imx. This will be explained in the "Setup Bootloader" and "Setup SD card" section.

It will generate u-boot.imx file.

Manual build Android Linux Kernel and modules

cd ~/androi d/ smarcfinxk6/ m 601_210 buil d/ ker nel _i nx
make distcl ean

make smarcfimx6_androi d_def config

make -j4 ul mage LOADADDR=0x10008000

make -j 4 nodul es

e

This will generate the ulmage (kernel image) in the kernel/arch/arm/boot folder

version 1.0a,1/15/2017

Last updated 2017-01-25

	SMARC-FiMX6-ANDROID-M6.0.1-2.0.1

